Maglev Trains
Claimed by Rachel Steppe
Maglev trains are high-speed trains that use principles of electromagnetism as well as electromagnetic propulsion to run. The main difference between a Maglev train and a conventional train is that rather than using an engine to propel itself along the train track, a Maglev train is designed to run using a magnetic field created be electric coils within the guideway walls and track.
How Maglev Trains Work
Basic Physics Principles
Maglev trains use basic magnetic repulsion and attraction in order to levitate over the track. Both the train and the tracks produce a magnetic field and the different interactions of these fields can be used in different ways to induce levitation. There are three different types of Maglev trains but all employ the use of either an electromagnet or a strong permanent magnet.
Types of Maglev Trains
Electromagnetic Suspension Trains
Electromagnetic Suspension (EMS) trains utilize electromagnets within the train to attract the train to the metal track. Because this type of Maglev train relies upon magnetic attraction, it has to be closely monitored electronically. Magnetic force is inversely related to the cubed distance of the two objects being considered. Essentially this means even a minor shift in the distance between the train and the track can result in a variation in magnetic force. This is why EMS trains must be monitored to maintain the typical 1/3 of an inch distance between the train and the track.
Electrodynamic Suspension Trains
Electrodynamic Suspension (EDS) trains utilize superconducting electromagnets or permanent magnets to create a magnetic field which will then induce a current in nearby conductors to propel the train along the tracks. In this type of Maglev train the force in the track is created by an induced magnetic field within the wires on the track. This means that the magnetic fields will realign themselves without needing to be monitored. However, if the train is not moving fast enough to create a large enough magnetic flux, the train will not levitate. Also due to the nature of the induced magnetic field, there will be a magnetic drag force present on the train as well. This is only a problem though at low speeds.
Permanent Magnet Passive Suspension Trains
How do we visualize or predict using this topic. Consider embedding some vpython code here Teach hands-on with GlowScript
Connectedness
- How is this topic connected to something that you are interested in?
- How is it connected to your major?
- Is there an interesting industrial application?
History
Put this idea in historical context. Give the reader the Who, What, When, Where, and Why.
Initial Development
Modern Implementation
Japan's Version of Maglev
Germany's Version of Maglev
See also
Are there related topics or categories in this wiki resource for the curious reader to explore? How does this topic fit into that context?
Further reading
Books, Articles or other print media on this topic
External links
Internet resources on this topic
References
This section contains the the references you used while writing this page