Electric Field and Electric Potential

From Physics Book
Revision as of 14:22, 25 November 2016 by Tconnors3 (talk | contribs)
Jump to navigation Jump to search

Claimed by Terrence Connors

The Main Idea

In physics, many phenomena that we observe are interrelated in some capacity. In the study of electricity and magnetism, several important physical quantities that play a crucial role in understanding physical interactions are derived from one another. Electric Field is a concept that is discussed early in most Electricity and Magnetism curricula, but it has enormous impact once we discover that it tells us information about Electric Potential, and from that, Potential Energy. This helps physicists to understand both the mechanics of a system, and the quantized nature of a system.

A Mathematical Model

We know that the electric force, given by Coulomb's Law, is [math]\displaystyle{ {\vec{F}=q\vec{E}} }[/math]. We also know that electric field and electric force are closely related, the electric field being equal to the electric force divided by the amount of charge [math]\displaystyle{ {\vec{E}=\frac{\vec{F}}{q}} }[/math].

If we think back to the study of conservation of energy, we know that the change in potential energy of a system is work, which is a force being applied over a distance. Since force and distance are vectors, integrating up over the distance of applied force, we obtain: <math>{\delta\vec{U}=

A Computational Model

How do we visualize or predict using this topic. Consider embedding some vpython code here Teach hands-on with GlowScript

Examples

Simple

Middling

Difficult

Connectedness

  1. How is this topic connected to something that you are interested in?
  2. How is it connected to your major?
  3. Is there an interesting industrial application?

History

See also

Further reading

External links

References