Temperature & Entropy
Claimed by Josh Brandt (April 19th, Spring 2022)
Short Description of Topic
The Main Idea
A Mathematical Model
The fundamental relationship between Temperature [math]\displaystyle{ T }[/math], Energy [math]\displaystyle{ E }[/math] and Entropy [math]\displaystyle{ S \equiv k_B \ln\Omega }[/math] is [math]\displaystyle{ \frac{dS}{dE}=\frac{1}{T} }[/math].
In order to understand and predict the behavior of solids, we can employ the Einstein Model. This simple model treats interatomic Coulombic force as a spring, justified by the often highly parabolic potential energy curve near the equilibrium in models of interatomic attraction (see Morse Potential, Buckingham Potential, and Lennard-Jones potential). In this way, one can imagine a cubic lattice of spring-interconnected atoms, with an imaginary cube centered around each one slicing each and every spring in half.
A quantum mechanical harmonic oscillator has quantized energy states, with one quanta being a unit of energy [math]\displaystyle{ q=\hbar \omega_0 }[/math]
A Computational Model
How do we visualize or predict using this topic. Consider embedding some vpython code here Teach hands-on with GlowScript
Examples
Be sure to show all steps in your solution and include diagrams whenever possible
Simple
Middling
Difficult
Connectedness
- How is this topic connected to something that you are interested in?
- How is it connected to your major?
- Is there an interesting industrial application?
History
The concepts of Temperature, Entropy and Energy have been linked throughout history. Historical notions of Heat described it as a particle, such as Isaac Newton even believing it to have mass. First appearing in the literature in modern context in 1803, Lazare Carnot formalized the idea that energy cannot be perfectly channeled: disorder is an intrinsic property of energy transformation. In the mid 1800s, Rudolf Clausius mathematically described a "transformation-content" of energy loss during any thermodynamic process. From the Greek word τροπή pronounced as "tropey" meaning "change", the prefix of "en"ergy was added onto the term when in 1865 entropy as we call it today was introduced. Clausius himself said "I prefer going to the ancient languages for the names of important scientific quantities, so that they may mean the same thing in all living tongues. I propose, therefore, to call S the entropy of a body, after the Greek word "transformation". I have designedly coined the word entropy to be similar to energy, for these two quantities are so analogous in their physical significance, that an analogy of denominations seems to me helpful." Two decades later, Ludwig Boltzmann established the connection between entropy and the number of states of a system, introducing the equation we use today and the famous Boltzmann Constant: the first major idea introduced to the modern field of statistical thermodynamics. (Wikipedia)
See also
Are there related topics or categories in this wiki resource for the curious reader to explore? How does this topic fit into that context?
Further reading
Books, Articles or other print media on this topic
External links
Internet resources on this topic
References
This section contains the the references you used while writing this page