Right-Hand Rule
Short Description of Topic
The Main Idea
The Right-Hand Rule is an easy way to find the direction of a cross product interaction before doing the math.
A Mathematical Model
The Right-Hand Rule is mathamatically modeled by the cross product:
- [math]\displaystyle{ \mathbf{u\times v}=(u_2v_3\mathbf{i}+u_3v_1\mathbf{j}+u_1v_2\mathbf{k}) -(u_3v_2\mathbf{i}+u_1v_3\mathbf{j}+u_2v_1\mathbf{k}) }[/math]
A Computational Model
The cross product is used to describe many magnetic interactions, for example, magnetic field created by a moving charge or a current and magnetic force on a particle by a magnetic field. Because of this, using the right hand rule, to determine the direction of a cross product, can be a useful to check behind the math for sign errors.
Follow the chart bellow to find which fingers correspond to which vectors.
- [math]\displaystyle{ \mathbf{A\times B}=\mathbf{C} }[/math]
Vector | Right-hand | Right-hand (alternative) |
---|---|---|
A | First or index | Thumb |
B | Second finger or palm | First or index |
C | Thumb | Second finger or palm |
Examples
Simple
Middling
Difficult
Connectedness
- How is this topic connected to something that you are interested in?
- How is it connected to your major?
- Is there an interesting industrial application?
History
Put this idea in historical context. Give the reader the Who, What, When, Where, and Why.
See also
Are there related topics or categories in this wiki resource for the curious reader to explore? How does this topic fit into that context?
Further reading
Books, Articles or other print media on this topic
External links
Internet resources on this topic
References
This section contains the the references you used while writing this page