Magnus Effect

From Physics Book
Revision as of 02:37, 6 December 2015 by Kbreslin6 (talk | contribs) (→‎History)
Jump to navigation Jump to search

The Magnus effect is the effect in which one can observe a ball or cylinder curving from its initial path of motion through the air. Contents

   1 The Magnus Effect
       1.1 A Mathematical Model
       1.2 A Computational Model
   2 Examples
       2.1 Simple
       2.2 Middling
       2.3 Difficult
   3 Connectedness
   4 History
   5 See also
       5.1 Further reading
       5.2 External links
   6 References


The Magnus Effect

The Magnus Effect is the lift force created on a rotating spherical or cylindrical object about an axis as it moves through a fluid. The force is perpendicular to the forward motion and causes the object to deviate from its standard flight path. Areas of high and low pressure are formed around the object, and the object tends to


A Mathematical Model

The Magnus effect is an application of Bernoulli's theorem. This theorem states that if a fluid has velocity v, the pressure p of that fluid is equal to 1rv^2, with r being the constant fluid density. Since the pressure is normal to the surface of an object, the upward component is -sin(q)p(q). If we integrate the pressure times the surface area of a cylinder with radius r, we get the lift:

F_p = -(rho*Gamma)/4 (1+1/r^2)

If we say r = 1, the net lift can be shown as:

L = -rho*v_0*Gamma

This is the Magnus effect.


A Computational Model

A computational model of the Magnus effect can be observed by this graphic created in VPython: Magnus effect [1]

Connectedness

The Magnus effect can be seen perhaps most commonly in the world of sports. In baseball, pitchers very their grip, release, and pressure placed on each finger in an effort to maximize the Magnus effect and achieve large levels of break on their pitches.

A breakdown of the Magnus effect in baseball can be seen in this video showing the pitches of legendary Yankees closer Mariano Rivera.[2]


History

Sir Isaac Newton recorded the effects in 1672 after observing the flight of tennis balls at his college in Cambridge. Benjamin Robins also described what would come to be known as the Magnus effect in 1742 after observing the curving of musket balls. However, the effect would be named after German physicist and chemist Gustav Magnus (1802-1870). He experimented

See also

Are there related topics or categories in this wiki resource for the curious reader to explore? How does this topic fit into that context? Further reading

Books, Articles or other print media on this topic External links

[1]


References

This section contains the the references you used while writing this page Category:

   [Interactions http://www.physicsbook.gatech.edu/Main_Page]