Charging and Discharging a Capacitor

From Physics Book
Revision as of 15:27, 1 December 2015 by SHoward (talk | contribs)
Jump to navigation Jump to search

Claimed by SHoward

Short Description of Topic

The Main Idea

Discharging a Capacitor

A circuit with a charged capacitor has an electric fringe field inside the wire. This field creates an electron current. The electron current will move opposite the direction of the electric field. However, so long as the electron current is running, the capacitor is being discharged. The electron current is moving negative charges away from the negatively charged plate and towards the positively charged plate. Once the charges even out or are neutralized the electric field will cease to exist. Therefore the current stops running.

In the example where the charged capacitor is connected to a light bulb you can see the electric field is large in the beginning but decreases over time. The electron current is also greater in the beginning and decreases over time. Because of this the light bulb starts out shining brightly but slowly dims and goes out.

Charging a Capacitor

Charging a capacitor isn’t much more difficult than discharging and the same principles still apply. The circuit consists of two batteries, a light bulb, and a capacitor. Essentially, the electron current from the batteries will continue to run until the circuit reaches equilibrium (the capacitor is “full”). Just like when discharging, the bulb starts out bright while the electron current is running, but it slowly dims and goes out as the capacitor charges.

The electron current will flow out the negative end of the battery as usual (conventional current will exit the positive end). Positive charges begin to build up on the right plate and negative charges on the left. The electric field slowly decreases until the net electric field is 0. The fringe field is equal and opposite to the electric field caused by everything else.

If you were to draw a box around the capacitor and label it with positive and negative ends it would look like a battery. It also behaves like a battery. The electron current will continue to flow and the electric field will continue to exist until the potential difference across the capacitor is equal to that of the batteries (sum of emf of all batteries in the circuit).

A Mathematical Model

What are the mathematical equations that allow us to model this topic. For example [math]\displaystyle{ {\frac{d\vec{p}}{dt}}_{system} = \vec{F}_{net} }[/math] where p is the momentum of the system and F is the net force from the surroundings.

A Computational Model

How do we visualize or predict using this topic. Consider embedding some vpython code here Teach hands-on with GlowScript

Examples

Be sure to show all steps in your solution and include diagrams whenever possible

Simple

Middling

Difficult

Connectedness

  1. How is this topic connected to something that you are interested in?
  2. How is it connected to your major?
  3. Is there an interesting industrial application?

History

Put this idea in historical context. Give the reader the Who, What, When, Where, and Why.

See also

Are there related topics or categories in this wiki resource for the curious reader to explore? How does this topic fit into that context?

Further reading

Books, Articles or other print media on this topic

External links

Internet resources on this topic

References

This section contains the the references you used while writing this page