Producing a Radiative Electric Field

From Physics Book
Revision as of 15:18, 18 November 2015 by Ck (talk | contribs)
Jump to navigation Jump to search

This page explains the relationship between measured radiative electric field and the properties of charges in a system.

Calculating Radiative Electric Field

Maintained by Charles Kilpatrick --Ck (talk) 14:18, 18 November 2015 (EST)

A Mathematical Model

The radiative electric field can be generally modeled as [math]\displaystyle{ \vec{E}_{radiative} = \frac{1}{4 \pi \epsilon_0} \frac{-q \vec{a}_\perp}{c^2r} }[/math] where q is the charge, [math]\displaystyle{ \vec{a}_\perp }[/math] is the projected acceleration, c is the speed of light and r is the distance between the charge and the observation location.

A Computational Model

How do we visualize or predict using this topic. Consider embedding some vpython code here Teach hands-on with GlowScript

Examples

Be sure to show all steps in your solution and include diagrams whenever possible

Simple

Middling

Difficult

Connectedness

  1. How is this topic connected to something that you are interested in?
  2. How is it connected to your major?
  3. Is there an interesting industrial application?

History

Put this idea in historical context. Give the reader the Who, What, When, Where, and Why.

See also

Are there related topics or categories in this wiki resource for the curious reader to explore? How does this topic fit into that context?

Further reading

Books, Articles or other print media on this topic

External links

Internet resources on this topic

References

This section contains the the references you used while writing this page