|
|
Line 23: |
Line 23: |
| == Organizing Categories == | | == Organizing Categories == |
| These are the broad, overarching categories, that we cover in three semester of introductory physics. You can add subcategories as needed but a single topic should direct readers to a page in one of these categories. | | These are the broad, overarching categories, that we cover in three semester of introductory physics. You can add subcategories as needed but a single topic should direct readers to a page in one of these categories. |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
| ===Properties of Matter===
| |
| <div class="mw-collapsible-content">
| |
| *[[Charge]]
| |
| *[[Spin]]
| |
| *[[Wavelength]]
| |
| *[[Electrical Conductivity/Resistivity]]
| |
| *[[Non-Newtonian Fluids]]
| |
| *[[Ferrofluids]]
| |
| *[[Color]]
| |
| *[[Plasma]]
| |
| *[[Electron Mobility]]
| |
| </div>
| |
| </div>
| |
|
| |
| <div class="toccolours mw-collapsible mw-collapsed">
| |
|
| |
| ===Contact Interactions===
| |
| <div class="mw-collapsible-content">
| |
| * [[Geneva Drives: An Interesting Method of Movement]]
| |
| </div>
| |
| </div>
| |
|
| |
| <div class="toccolours mw-collapsible mw-collapsed">
| |
|
| |
| ===Momentum===
| |
| <div class="mw-collapsible-content">
| |
| *[[Momentum at High Speeds]]
| |
| </div>
| |
| </div>
| |
|
| |
| <div class="toccolours mw-collapsible mw-collapsed">
| |
|
| |
| ===Angular Momentum===
| |
| <div class="mw-collapsible-content">
| |
| </div>
| |
| </div>
| |
|
| |
| <div class="toccolours mw-collapsible mw-collapsed">
| |
|
| |
| ===Energy===
| |
| <div class="mw-collapsible-content">
| |
| *[[The Photoelectric Effect]]
| |
| *[[Photons]]
| |
| *[[Rest Mass Energy]]
| |
| **[[Potential Energy for a Magnetic Dipole]]
| |
| **[[Potential Energy of a Multiparticle System]]
| |
| **[[Graviational Potential Energy]]
| |
| *[[Electric Potential]]
| |
| *[[Franck-Hertz Experiment]]
| |
| *[[Electronic Energy Levels]]
| |
| *[[Electronic Energy Levels and Photons]]
| |
| *[[Energy Density]]
| |
| **[[Spontaneous Photon Emission]]
| |
| *[[Path Independence of Electric Potential]]
| |
| *[[Energy in a Circuit]]
| |
| *[[The Photovoltaic Effect]]
| |
| </div>
| |
| </div>
| |
|
| |
| <div class="toccolours mw-collapsible mw-collapsed">
| |
|
| |
| ===Collisions===
| |
| <div class="mw-collapsible-content">
| |
| [[File:opener.png]]
| |
|
| |
| *[[Collisions]]
| |
| Collisions are events that happen very frequently in our day-to-day world. In the realm of Physics, a collision is defined as any sort of process in which before and after a short time interval there is little interaction, but during that short time interval there are large interactions. When looking at collisions, it is first important to understand two very important principles: the Momentum Principle and the Energy Principle. Both principles serve use when talking of collisions because they provide a way in which to analyze these collisions. Collisions themselves can be categorized into 3 main different types: elastic collisions, inelastic collisions, maximally inelastic collisions. All 3 collisions will get touched on in more detail further on.
| |
| [[File:pe.png]]
| |
|
| |
| *[[Elastic Collisions]]
| |
| A collision is deemed "elastic" when the internal energy of the objects in the system does not change (in other words, change in internal energy equals 0). Because in an elastic collision no kinetic energy is converted over to internal energy, in any elastic collision Kfinal always equals Kinitial.
| |
| [[File:Elco.png]]
| |
|
| |
| *[[Inelastic Collisions]]
| |
| A collision is said to be "inelastic" when it is not elastic; therefore, an inelastic collision is an interaction in which some change in internal energy occurs between the colliding objects (in other words, change in internal energy does not equal 0). Examples of such changes that occur between colliding objects include, but are not limited to, things like they get hot, or they vibrate/rotate, or they deform. Because some of the kinetic energy is converted to internal energy during an inelastic collision, Kfinal does not equal Kinitial.
| |
| There are a few characteristics that one can search for when identifying inelasticity. These indications include things such as:
| |
| *Objects stick together after the collision
| |
| *An object is in an excited state after the collision
| |
| *An object becomes deformed after the collision
| |
| *The objects become hotter after the collision
| |
| *There exists more vibration or rotation after the collision
| |
| [[File:inve.gif]]
| |
|
| |
|
| |
| *[[Maximally Inelastic Collision]]
| |
| Maximally inelastic collisions, also known as "sticking collisions", are the most extreme kinds of inelastic collisions. Just as its secondary name implies, a maximally inelastic collision is one in which the colliding objects stick together creating maximum dissipation. This does not automatically mean that the colliding objects stop dead because the law of conservation of momentum. In a maximally inelastic collision, the remaining kinetic energy is present only because total momentum can't change and must be conserved.
| |
| [[File:inel.gif]]
| |
|
| |
| *[[Head-on Collision of Equal Masses]]
| |
| The easiest way to understand this phenomenon is to look at it through an example. In this case, we can analyze it through the common game of billiards. Taking the two, equally massed billiard balls as the system, we can neglect the small frictional force exerted on the balls by the billiard table. The Momentum Principle states that in this head-on collision of billiard balls the total final momentum in the x direction must equal the total initial momentum. However, this alone does not give us the knowledge to know how the momentum will be divided up between the two balls. Considering the law of conservation of energy, we can more accurately depict what will happen. This will also allow for one to identify what kind of collision occurs (elastic, inelastic, or maximally inelastic). It is important to know that head-on collisions of equal masses do not have a definite type of collision associated with it.
| |
| [[File:momentum-real-life-applications-2895.jpg]] [[File:8ball.gif]]
| |
|
| |
| *[[Head-on Collision of Unequal Masses]]
| |
| Just as with head-on collisions of equal masses, it is easy to understand head-on collisions of unequal masses by viewing it through an example. Let's take for example two balls of unequal masses like a ping-pong ball and a bowling ball. For the purpose of this example (so as to allow for no friction and no other significant external forces), let's imagine these objects collide in outer space inside an orbiting spacecraft. If there were to be a collision between the two, what would one expect to happen? One could expect to see the ping-pong ball collide with the bowling ball and bounce straight back with a very small change of speed. What one might not expect as much is that the bowling ball also moves, just very slowly. Again, this can all be explained through the conservation of momentum and the conservation of energy.
| |
| [[File:mi3e.jpg]]
| |
|
| |
| *[[Frame of Reference]]
| |
| In the world of Physics, a frame of reference is the perspective from which a system is observed. It can be stationary or sometimes it can even be moving at a constant velocity. In some rare cases, the frame of reference moves at an nonconstant velocity and is deemed "noninertial" meaning the basic laws of physics do not apply. Continuing with the trend of examples, pretend you are at a train station observing trains as they pass by. From your stationary frame of reference, you observe that the passenger on the train is moving at the same velocity as the train. However, from a moving frame of reference, say from the eyes of the train conductor, he would view the train passengers as "anchored" to the train.
| |
| [[File:train.png]]
| |
|
| |
| *[[Scattering: Collisions in 2D and 3D]]
| |
| Experiments that involve scattering are often used to study the structure and behavior of atoms, nuclei, as well as of other small particles. In an experiment like such, a beam of particles collides with other particles. If it is an atomic or nuclear collision, we are unable to observe the curving trajectories inside the tiny region of interaction. Instead, we can only truly observe the trajectories before and after the collision. This is only possible because the particles are at a farther distance apart and have a very weak mutual interaction; this essentially means that the particles are moving almost in a straight line. A good example which demonstrates scattering is the collision between an alpha particle (the nucleus of a helium atom) and the nucleus of a gold atom. One will understand this phenomenon more in depth after first understanding the Rutherford Experiment which will get touched on later.
| |
|
| |
| *[[Rutherford Experiment and Atomic Collisions]]
| |
| In England in 1911, a famous experiment was performed by a group of scientists led by Mr. Ernest Rutherford. This experiment, later known as "The Rutherford Experiment", was a tremendous breakthrough for its time because it led to the discovery of the nucleus inside the atom. Rutherford's experiment involved the scattering of a high-speed alpha particle (now known as a helium nuclei - 2 protons and 2 neutrons) as it was shot at a thin gold foil (consisting of a nuclei with 79 protons and 118 neutrons). In the experiment, Rutherford and his team discovered that the velocity of the alpha particles was not high enough to allow the particles to make actual contact with the gold nucleus. Although they never actually made contact, it is still deemed a collision because there exists a sizable force between the alpha particle and the gold nucleus over a very short period of time. In conclusion, we say the alpha particle is "scattered" by its interaction with the nucleus of a gold atom and experiments like such are called "scattering" experiments.
| |
| [[File:ruthef.jpg]]
| |
|
| |
| *[[Coefficient of Restitution]]
| |
| The coefficient of restitution is a measure of the elasticity in a collision. It is the ratio of the differences in velocities before and after the collision. The coefficient is evaluated by taking the difference in the velocities of the colliding objects after the collision and dividing by the difference in the velocities of the colliding objects before the collision.
| |
|
| |
|
| |
|
| |
| All of the following information was collected from the Matter and Interactions 4th Edition physics textbook. The book is cited as follows...
| |
|
| |
| Chabay, Ruth W., and Bruce A. Sherwood. "Chapter 10: Collisions." Matter & Interactions. Fourth Edition ed. Wiley, 2015. 383-409. Print.
| |
|
| |
|
| |
| </div>
| |
| </div>
| |
|
| |
| <div class="toccolours mw-collapsible mw-collapsed">
| |
|
| |
| ===Fields===
| |
| <div class="mw-collapsible-content">
| |
| * [[Electric Field]] of a
| |
| ** [[Point Charge]]
| |
| ** [[Electric Dipole]]
| |
| ** [[Capacitor]]
| |
| ** [[Charged Rod]]
| |
| ** [[Charged Ring]]
| |
| ** [[Charged Disk]]
| |
| ** [[Charged Spherical Shell]]
| |
| ** [[integrating the spherical shell]]
| |
| ** [[Charged Cylinder]]
| |
| **[[A Solid Sphere Charged Throughout Its Volume]]
| |
| *[[Charge Density]]
| |
| *[[Superposition Principle]]
| |
| *[[Electric Potential]]
| |
| **[[Potential Difference Path Independence]]
| |
| **[[Potential Difference in a Uniform Field]]
| |
| **[[Potential Difference of point charge in a non-Uniform Field]]
| |
| **[[Potential Difference at One Location]]
| |
| **[[Sign of Potential Difference]]
| |
| **[[Potential Difference in an Insulator]]
| |
| **[[Energy Density and Electric Field]]
| |
| ** [[Systems of Charged Objects]]
| |
| *[[Electric Force]]
| |
| *[[Polarization]]
| |
| **[[Polarization of an Atom]]
| |
| **[[Charged Conductor and Charged Insulator]]
| |
| **[[Polarization and Drift Speed]]
| |
| *[[Charge Motion in Metals]]
| |
| *[[Charge Transfer]]
| |
| **[[Electrostatic Discharge]]
| |
| *[[Magnetic Field]]
| |
| **[[Right-Hand Rule]]
| |
| **[[Direction of Magnetic Field]]
| |
| **[[Magnetic Field of a Long Straight Wire]]
| |
| **[[Magnetic Field of a Loop]]
| |
| **[[Magnetic Field of a Solenoid]]
| |
| **[[Bar Magnet]]
| |
| **[[Magnetic Dipole Moment]]
| |
| ***[[Stern-Gerlach Experiment]]
| |
| **[[Magnetic Torque]]
| |
| **[[Magnetic Force]]
| |
| ***[[Applying Magnetic Force to Currents]]
| |
| ***[[Magnetic Force in a Moving Reference Frame]]
| |
| ***[[The Hall Effect]]
| |
| **[[Earth's Magnetic Field]]
| |
| **[[Atomic Structure of Magnets]]
| |
| *[[Combining Electric and Magnetic Forces]]
| |
| **[[Hall Effect]]
| |
| **[[Lorentz Force]]
| |
| **[[Biot-Savart Law]]
| |
| **[[Biot-Savart Law for Currents]]
| |
| **[[Integration Techniques for Magnetic Field]]
| |
| **[[Sparks in Air]]
| |
| **[[Motional Emf]]
| |
| **[[Detecting a Magnetic Field]]
| |
| **[[Moving Point Charge]]
| |
| **[[Non-Coulomb Electric Field]]
| |
| **[[Electric Motors]]
| |
| **[[Solenoid Applications]]
| |
| </div>
| |
| </div>
| |
|
| |
| <div class="toccolours mw-collapsible mw-collapsed">
| |
|
| |
| ===Simple Circuits===
| |
| <div class="mw-collapsible-content">
| |
| *[[Components]]
| |
| *[[Steady State]]
| |
| *[[Non Steady State]]
| |
| *[[Charging and Discharging a Capacitor]]
| |
| *[[Work and Power In A Circuit]]
| |
| *[[Thin and Thick Wires]]
| |
| *[[Node Rule]]
| |
| *[[Loop Rule]]
| |
| *[[Resistivity]]
| |
| *[[Power in a circuit]]
| |
| *[[Ammeters,Voltmeters,Ohmmeters]]
| |
| *[[Current]]
| |
| **[[AC]]
| |
| *[[Ohm's Law]]
| |
| *[[Series Circuits]]
| |
| *[[Parallel Circuits]]
| |
| *[[RC]]
| |
| *[[Parallel Circuits vs. Series Circuits]]
| |
| *[[AC vs DC]]
| |
| **[[Rectification (Converting AC to DC)]]
| |
| *[[Charge in a RC Circuit]]
| |
| *[[Current in a RC circuit]]
| |
| *[[Circular Loop of Wire]]
| |
| *[[Current in a RL Circuit]]
| |
| *[[Current in an LC Circuit]]
| |
| *[[RL Circuit]]
| |
| *[[Feedback]]
| |
| *[[Transformers (Circuits)]]
| |
| *[[Resistors and Conductivity]]
| |
| *[[Semiconductor Devices]]
| |
| *[[Insulators]]
| |
| *[[Volt]]
| |
| *[[Batteries]]
| |
| *[[Three Prong Circuits]]
| |
| </div>
| |
| </div>
| |
|
| |
| <div class="toccolours mw-collapsible mw-collapsed">
| |
|
| |
| ===Maxwell's Equations===
| |
| <div class="mw-collapsible-content">
| |
| *[[Gauss's Flux Theorem]]
| |
| **[[Electric Fields]]
| |
| ***[[Examples of Flux Through Surfaces and Objects]]
| |
| **[[Magnetic Fields]]
| |
| **[[Proof of Gauss's Law]]
| |
| *[[Ampere's Law]]
| |
| **[[Magnetic Field of Coaxial Cable Using Ampere's Law]]
| |
| **[[Magnetic Field of a Long Thick Wire Using Ampere's Law]]
| |
| **[[Magnetic Field of a Toroid Using Ampere's Law]]
| |
| **[[The Differential Form of Ampere's Law]]
| |
| *[[Faraday's Law]]
| |
| **[[Curly Electric Fields]]
| |
| **[[Inductance]]
| |
| ***[[Transformers (Physics)]]
| |
| ***[[Energy Density]]
| |
| **[[Lenz's Law]]
| |
| ***[[Lenz Effect and the Jumping Ring]]
| |
| **[[Lenz's Rule]]
| |
| **[[Motional Emf using Faraday's Law]]
| |
| *[[Ampere-Maxwell Law]]
| |
| *[[Superconductors]]
| |
| **[[Meissner effect]]
| |
| </div>
| |
| </div>
| |
|
| |
| <div class="toccolours mw-collapsible mw-collapsed">
| |
|
| |
| ===Radiation===
| |
| <div class="mw-collapsible-content">
| |
| *[[Producing a Radiative Electric Field]]
| |
| *[[Sinusoidal Electromagnetic Radiaton]]
| |
| *[[Lenses]]
| |
| *[[Energy and Momentum Analysis in Radiation]]
| |
| **[[Poynting Vector]]
| |
| *[[Electromagnetic Propagation]]
| |
| **[[Wavelength and Frequency]]
| |
| *[[Snell's Law]]
| |
| *[[Effects of Radiation on Matter]]
| |
| *[[Light Propagation Through a Medium]]
| |
| *[[Light Scaterring: Why is the Sky Blue]]
| |
| *[[Light Refraction: Bending of light]]
| |
| *[[Cherenkov Radiation]]
| |
| *[[Rayleigh Effect]]
| |
| *[[Image Formation]]
| |
| *[[Nuclear Energy from Fission and Fusion]]
| |
| </div>
| |
| <div class="toccolours mw-collapsible mw-collapsed">
| |
|
| |
| ===Sound===
| |
| <div class="mw-collapsible-content">
| |
| *[[Doppler Effect]]
| |
| *[[Nature, Behavior, and Properties of Sound]]
| |
| *[[Speed of Sound]]
| |
| *[[Resonance]]
| |
| *[[Sound Barrier]]
| |
| *[[Sound Propagation in Water]]
| |
| *[[Chladni Plates]]
| |
| </div>
| |
| </div>
| |
| <div class="toccolours mw-collapsible mw-collapsed">
| |
|
| |
| ===Waves===
| |
| <div class="mw-collapsible-content">
| |
| *[[Bragg's Law]]
| |
| *[[Standing waves]]
| |
| *[[Gravitational waves]]
| |
| *[[Plasma waves]]
| |
| *[[Wave-Particle Duality]]
| |
| *[[Electromagnetic Spectrum]]
| |
| *[[Color Light Wave]]
| |
| *[[X-Rays]]
| |
| *[[Rayleigh Wave]]
| |
| *[[Pendulum Motion]]
| |
| *[[Transverse and Longitudinal Waves]]
| |
| *[[Planck's Relation]]
| |
| *[[interference]]
| |
| *[[Polarization of Waves]]
| |
| *[[Angular Resolution]]
| |
| </div>
| |
| </div>
| |
| <div class="toccolours mw-collapsible mw-collapsed">
| |
|
| |
| ===Real Life Applications of Electromagnetic Principles===
| |
| <div class="mw-collapsible-content">
| |
| *[[Scanning Electron Microscopes]]
| |
| *[[Maglev Trains]]
| |
| *[[Spark Plugs]]
| |
| *[[Metal Detectors]]
| |
| *[[Speakers]]
| |
| *[[Radios]]
| |
| *[[Ampullae of Lorenzini]]
| |
| *[[Electrocytes]]
| |
| *[[Cyclotron]]
| |
| *[[Generator]]
| |
| *[[Using Capacitors to Measure Fluid Level]]
| |
| *[[Cyclotron]]
| |
| *[[Railgun]]
| |
| *[[Magnetic Resonance Imaging]]
| |
| *[[Electric Eels]]
| |
| *[[Windshield Wipers]]
| |
| *[[Galvanic Cells]]
| |
| *[[Electrolytic Cells]]
| |
| *[[Magnetoreception]]
| |
| *[[Memory Storage Devices]]
| |
| *[[Electric Pickups]]
| |
| *[[Inductive Sensors for Traffic Lights]]
| |
| *[[Multi-limbed Robotics]]
| |
| </div>
| |
| </div>
| |
|
| |
| <div class="toccolours mw-collapsible mw-collapsed">
| |
|
| |
| ===Optics===
| |
| <div class="mw-collapsible-content">
| |
| *[[Mirrors]]
| |
| *[[Refraction]]
| |
| *[[Quantum Properties of Light]]
| |
| *[[Lasers]]
| |
| *[[Lenses]]
| |
| *[[Dispersion and Scattering]]
| |
| *[[Telescopes]]
| |
| *[[Resolving Power]]
| |
|
| |
| </div>
| |
| </div>
| |
|
| |
|
| == Resources == | | == Resources == |
Line 391: |
Line 29: |
| * A page to keep track of all the physics [[Constants]] | | * A page to keep track of all the physics [[Constants]] |
| * A page for review of [[Vectors]] and vector operations | | * A page for review of [[Vectors]] and vector operations |
| | | * A listing of [[Notable Scientist]] with links to their individual pages |
| </div>
| |
|
| |
|
| <div style="float:left; border:thin solid blue; width:300px; padding:10px;"> | | <div style="float:left; border:thin solid blue; width:300px; padding:10px;"> |
Line 1,252: |
Line 889: |
| *[[Elementary Particles and Particle Physics Theory]] | | *[[Elementary Particles and Particle Physics Theory]] |
| *[[String Theory]] | | *[[String Theory]] |
| </div>
| |
| </div>
| |
|
| |
| ===Notable Scientists===
| |
| <div class="toccolours mw-collapsible mw-collapsed">
| |
| <div class="mw-collapsible-content">
| |
| *[[Alexei Alexeyevich Abrikosov]]
| |
| *[[Christian Doppler]]
| |
| *[[Albert Einstein]]
| |
| *[[Ernest Rutherford]]
| |
| *[[Joseph Henry]]
| |
| *[[Michael Faraday]]
| |
| *[[J.J. Thomson]]
| |
| *[[James Maxwell]]
| |
| *[[Robert Hooke]]
| |
| *[[Carl Friedrich Gauss]]
| |
| *[[Nikola Tesla]]
| |
| *[[Andre Marie Ampere]]
| |
| *[[Sir Isaac Newton]]
| |
| *[[J. Robert Oppenheimer]]
| |
| *[[Oliver Heaviside]]
| |
| *[[Rosalind Franklin]]
| |
| *[[Enrico Fermi]]
| |
| *[[Robert J. Van de Graaff]]
| |
| *[[Charles de Coulomb]]
| |
| *[[Hans Christian Ørsted]]
| |
| *[[Philo Farnsworth]]
| |
| *[[Niels Bohr]]
| |
| *[[Georg Ohm]]
| |
| *[[Leo Szilard]]
| |
| *[[Galileo Galilei]]
| |
| *[[Gustav Kirchhoff]]
| |
| *[[Max Planck]]
| |
| *[[Heinrich Hertz]]
| |
| *[[Edwin Hall]]
| |
| *[[James Watt]]
| |
| *[[Count Alessandro Volta]]
| |
| *[[Josiah Willard Gibbs]]
| |
| *[[Richard Phillips Feynman]]
| |
| *[[Sir David Brewster]]
| |
| *[[Daniel Bernoulli]]
| |
| *[[William Thomson]]
| |
| *[[Leonhard Euler]]
| |
| *[[Robert Fox Bacher]]
| |
| *[[Stephen Hawking]]
| |
| *[[Amedeo Avogadro]]
| |
| *[[Wilhelm Conrad Roentgen]]
| |
| *[[Pierre Laplace]]
| |
| *[[Thomas Edison]]
| |
| *[[Hendrik Lorentz]]
| |
| *[[Jean-Baptiste Biot]]
| |
| *[[Lise Meitner]]
| |
| *[[Lisa Randall]]
| |
| *[[Felix Savart]]
| |
| *[[Heinrich Lenz]]
| |
| *[[Max Born]]
| |
| *[[Archimedes]]
| |
| *[[Jean Baptiste Biot]]
| |
| *[[Carl Sagan]]
| |
| *[[Eugene Wigner]]
| |
| *[[Marie Curie]]
| |
| *[[Pierre Curie]]
| |
| *[[Werner Heisenberg]]
| |
| *[[Johannes Diderik van der Waals]]
| |
| *[[Louis de Broglie]]
| |
| *[[Aristotle]]
| |
| *[[Émilie du Châtelet]]
| |
| *[[Blaise Pascal]]
| |
| *[[Siméon Denis Poisson]]
| |
| *[[Benjamin Franklin]]
| |
| *[[James Chadwick]]
| |
| *[[Henry Cavendish]]
| |
| *[[Thomas Young]]
| |
| *[[James Prescott Joule]]
| |
| *[[John Bardeen]]
| |
| *[[Leo Baekeland]]
| |
| *[[Alhazen]]
| |
| *[[Willebrord Snell]]
| |
| *[[Fritz Walther Meissner]]
| |
| *[[Johannes Kepler]]
| |
| *[[Johann Wilhelm Ritter]]
| |
| *[[Philipp Lenard]]
| |
| *[[Robert A. Millikan]]
| |
| *[[Joseph Louis Gay-Lussac]]
| |
| *[[Guglielmo Marconi]]
| |
| *[[William Lawrence Bragg]]
| |
| *[[Robert Goddard]]
| |
| *[[Léon Foucault]]
| |
| *[[Henri Poincaré]]
| |
| *[[Steven Weinberg]]
| |
| *[[Arthur Compton]]
| |
| *[[Pythagoras of Samos]]
| |
| *[[Subrahmanyan Chandrasekhar]]
| |
| *[[Wilhelm Eduard Weber]]
| |
| *[[Edmond Becquerel]]
| |
| *[[Joseph Rotblat]]
| |
| *[[Carl David Anderson]]
| |
| *[[Hermann von Helmholtz]]
| |
| *[[Nicolas Leonard Sadi Carnot]]
| |
| *[[Wallace Carothers]]
| |
| *[[David J. Wineland]]
| |
| *[[Rudolf Clausius]]
| |
| *[[Edward L. Norton]]
| |
| *[[Shuji Nakamura]]
| |
| *[[Pierre Laplace Pt. 2]]
| |
| *[[William B. Shockley]]
| |
| *[[Osborne Reynolds]]
| |
| *[[Christian Huygens]]
| |
| *[[Hans Bethe]]
| |
| *[[Erwin Schrodinger]]
| |
| *[[Wolfgang Pauli]]
| |
| *[[Paul Dirac]]
| |
| *[[Bill Nye]]
| |
| *[[Arnold Sommerfeld]]
| |
| *[[Ernest Lawrence]]
| |
| *[[James Franck]]
| |
| *[[Chen-Ning Yang]]
| |
| *[[Albert A. Michelson & Edward W. Morley]]
| |
| *[[George Paget Thomson]]
| |
| *[[Konstantin Tsiolkovsky]]
| |
| </div> | | </div> |
| </div> | | </div> |