Main Page: Difference between revisions

From Physics Book
Jump to navigation Jump to search
(Undo revision 23361 by Ed (talk))
No edit summary
Line 464: Line 464:
*[[Charged Ring]]
*[[Charged Ring]]
*[[Charged Disk]]
*[[Charged Disk]]
*[[Charged Capacitor]]
</div>
</div>
</div>
</div>
Line 479: Line 480:
====Potential energy====
====Potential energy====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
*[[Potential Energy]]
*[[Potential Energy - Claimed by Janki Patel]]
</div>
</div>
</div>
</div>
Line 488: Line 489:
*[[Electric Potential]]
*[[Electric Potential]]
*[[Path Independence of Electric Potential]]
*[[Path Independence of Electric Potential]]
*[[Potential DIfference Path Independence]]
*[[Potential Difference Path Independence, claimed by Aditya Mohile]]  
*[[Potential Difference in a Uniform Field]]
*[[Potential Difference in a Uniform Field]]
*[[Potential Difference of Point Charge in a Non-Uniform Field]]
*[[Potential Difference of Point Charge in a Non-Uniform Field]]
Line 512: Line 513:
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
*[[Path Independence of Electric Potential]]
*[[Path Independence of Electric Potential]]
*[[Potential DIfference Path Independence]]
*[[Potential Difference Path Independence, claimed by Aditya Mohile]]
</div>
</div>
</div>
</div>
Line 521: Line 522:
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
*[[Potential Difference in an Insulator]]
*[[Potential Difference in an Insulator]]
*[[Electric Field in an Insulator]]
</div>
</div>
</div>
</div>
Line 598: Line 600:
*[[Node Rule]]
*[[Node Rule]]
*[[Loop Rule]]
*[[Loop Rule]]
*[[Electric Potential Difference]]
</div>
</div>
</div>
</div>
Line 609: Line 612:
*[[Loop Rule]]
*[[Loop Rule]]
*[[Node Rule]]
*[[Node Rule]]
*[[Fundamentals of Resistance]]
</div>
</div>
</div>
</div>
Line 617: Line 621:
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
*[[Charging and Discharging a Capacitor]]
*[[Charging and Discharging a Capacitor]]
*[[RC Circuit]]
*[[RC Circuit]]
*[[R Circuit]]
*[[AC and DC]]
</div>
</div>
</div>
</div>
Line 629: Line 635:
*[[Magnetic Force in a Moving Reference Frame]]
*[[Magnetic Force in a Moving Reference Frame]]
*[[Right-Hand Rule]]
*[[Right-Hand Rule]]
*[[Analysis of Railgun vs Coil gun technologies]]
</div>
</div>
</div>
</div>
Line 638: Line 645:
*[[Magnetic Force]]
*[[Magnetic Force]]
*[[Lorentz Force]]
*[[Lorentz Force]]
*[[VPython Modelling of Electric and Magnetic Forces]]
</div>
</div>
</div>
</div>
Line 655: Line 663:
*[[Hall Effect]]
*[[Hall Effect]]
*[[Right-Hand Rule]]
*[[Right-Hand Rule]]
*[[Polarization]]
*[[Motional Emf]]
*[[Magnetic Force]]
*[[Magnetic Torque]]
</div>
</div>
</div>
</div>
Line 752: Line 762:


===Week 15===
===Week 15===
<div class="toccolours mw-collapsible mw-collapsed">
==== Electromagnetic Radiation ====
<div class="mw-collapsible-content">
*[[Electromagnetic Radiation]]
</div>
</div>
<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">
====Sparks in the air====
====Sparks in the air====

Revision as of 17:55, 19 April 2016

Welcome to the Georgia Tech Wiki for Introductory Physics. This resource was created so that students can contribute and curate content to help those with limited or no access to a textbook. When reading this website, please correct any errors you may come across. If you read something that isn't clear, please consider revising it for future students!

Looking to make a contribution?

  1. Pick one of the topics from intro physics listed below
  2. Add content to that topic or improve the quality of what is already there.
  3. Need to make a new topic? Edit this page and add it to the list under the appropriate category. Then copy and paste the default Template into your new page and start editing.

Please remember that this is not a textbook and you are not limited to expressing your ideas with only text and equations. Whenever possible embed: pictures, videos, diagrams, simulations, computational models (e.g. Glowscript), and whatever content you think makes learning physics easier for other students.

Source Material

All of the content added to this resource must be in the public domain or similar free resource. If you are unsure about a source, contact the original author for permission. That said, there is a surprisingly large amount of introductory physics content scattered across the web. Here is an incomplete list of intro physics resources (please update as needed).

  • A physics resource written by experts for an expert audience Physics Portal
  • A wiki written for students by a physics expert MSU Physics Wiki
  • A wiki book on modern physics Modern Physics Wiki
  • The MIT open courseware for intro physics MITOCW Wiki
  • An online concept map of intro physics HyperPhysics
  • Interactive physics simulations PhET
  • OpenStax algebra based intro physics textbook College Physics
  • The Open Source Physics project is a collection of online physics resources OSP
  • A resource guide compiled by the AAPT for educators ComPADRE

Resources


Physics 1

Week 1

Vectors and Units

Week 2

Week 3

Analytic Prediction with a Constant Force

Week 4

Week 5

Conservation of Momentum

Week 6

Week 7

Week 8

Work by Non-Constant Forces

Week 9

Week 10

Choice of System

Rotational and Vibrational Energy

Week 11

Different Models of a System

Models of Friction

Week 12

Week 13

Week 14

Week 15

Physics 2

Week 1

Electric field

Electric force

Electric field of a point particle

Week 2

Week 3

Week 4

Field of a charged rod

Field of a charged ring/disk/capacitor

Week 5

Sign of a potential difference

Week 6

Electric field and potential in an insulator

Moving charges in a magnetic field

Moving charges, electron current, and conventional current

Week 7

Magnetic field of a wire

Magnetic field of a current-carrying loop

Atomic structure of magnets

Week 8

Steady state current

Node rule

Electric fields and energy in circuits

Week 9

Electric field and potential in circuits with capacitors

Week 10

Magnetic force

Week 12

Week 13

Semiconductors

Week 14

Circuits revisited

Week 15

Electromagnetic Radiation


Sparks in the air

Physics 3

Week 1

Classical Physics

Week 2

Week 3

Week 4

Matter Waves

Week 5

Week 6

Week 7

The Hydrogen Atom

Week 8

Week 9

Molecules

Week 10

Statistical Physics

Week 11

Condensed Matter Physics

Week 12

The Nucleus

Week 13

Week 14