Main Page: Difference between revisions

From Physics Book
Jump to navigation Jump to search
Tag: Manual revert
(94 intermediate revisions by 9 users not shown)
Line 16: Line 16:
* A wiki written for students by a physics expert [http://p3server.pa.msu.edu/coursewiki/doku.php?id=183_notes MSU Physics Wiki]
* A wiki written for students by a physics expert [http://p3server.pa.msu.edu/coursewiki/doku.php?id=183_notes MSU Physics Wiki]
* A wiki book on modern physics [https://en.wikibooks.org/wiki/Modern_Physics Modern Physics Wiki]
* A wiki book on modern physics [https://en.wikibooks.org/wiki/Modern_Physics Modern Physics Wiki]
* A collection of 26 volumes of lecture notes by Prof. Wheeler of Reed College [https://rdc.reed.edu/c/wheeler/home/]
* The MIT open courseware for intro physics [http://ocw.mit.edu/resources/res-8-002-a-wikitextbook-for-introductory-mechanics-fall-2009/index.htm MITOCW Wiki]
* The MIT open courseware for intro physics [http://ocw.mit.edu/resources/res-8-002-a-wikitextbook-for-introductory-mechanics-fall-2009/index.htm MITOCW Wiki]
* An online concept map of intro physics [http://hyperphysics.phy-astr.gsu.edu/hbase/hph.html HyperPhysics]
* An online concept map of intro physics [http://hyperphysics.phy-astr.gsu.edu/hbase/hph.html HyperPhysics]
Line 189: Line 190:
====Identifying Forces====
====Identifying Forces====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
====Isabel Hollhumer F24====
*[[Free Body Diagram]]
*[[Free Body Diagram]]
*[[Inclined Plane]]
*[[Inclined Plane]]
Line 207: Line 209:
===Week 7===
===Week 7===
<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">
====Jeet Bhatkar====
====Energy Principle====
====Energy Principle====
The Energy Principle is a fundamental concept in physics that describes the relationship between different forms of energy and their conservation within a system. Understanding the Energy Principle is crucial for analyzing the motion and interactions of objects in various physical scenarios.
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
*[[Energy of a Single Particle]]
 
*[[Kinetic Energy]]
*[[Kinetic Energy]]
Kinetic energy is the energy an object possesses due to its motion.
*[[Work/Energy]]
*[[Work/Energy]]
Potential energy arises from the position of an object relative to its surroundings. Common forms of potential energy include gravitational potential energy and elastic potential energy.
*[[The Energy Principle]]
*[[The Energy Principle]]
Work and energy are closely related concepts. Work (
𝑊) done on an object is defined as the force (
𝐹) applied to the object multiplied by the displacement (
𝑑) of the object in the direction of the force:
The Energy Principle states that the total mechanical energy of a system remains constant if only conservative forces (forces that depend only on the positions of the objects) are acting on the system.
*[[Conservation of Energy]]
*[[Conservation of Energy]]
The principle of conservation of energy states that the total energy of an isolated system remains constant over time. In other words, energy cannot be created or destroyed, only transformed from one form to another. This principle is a fundamental concept in physics and has wide-ranging applications in mechanics, thermodynamics, and other branches of science.
</div>
</div>
</div>
</div>
Line 420: Line 433:


<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">
====Dipoles====
====Dipoles====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
Line 582: Line 596:
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
*[[Magnetic Field of a Long Straight Wire]]
*[[Magnetic Field of a Long Straight Wire]]
*[[Magnetic Field of a Curved Wire]]
</div>
</div>
</div>
</div>
Line 617: Line 632:
===Week 8===
===Week 8===
<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">
====Circuitry Basics====
<div class="mw-collapsible-content">
*[[Understanding Fundamentals of Current, Voltage, and Resistance]]
</div>
</div>
<div class="toccolours mw-collapsible mw-collapsed">
====Steady state current====
====Steady state current====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
Line 702: Line 726:
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
*[[Hall Effect]]
*[[Hall Effect]]
<h1><strong>Alayna Baker Spring 2020</strong></h1>
[[File:Hall Effect 1.jpg]]
[[File:Hall Effect 2.jpg]]
*[[Right-Hand Rule]]
*[[Right-Hand Rule]]
*[[Motional Emf]]
*[[Motional Emf]]
Line 711: Line 731:
*[[Magnetic Torque]]
*[[Magnetic Torque]]
</div>
</div>
</div>
<div class="toccolours mw-collapsible mw-collapsed">
]]]====Motional EMF====
<div class="mw-collapsible-content">
*[[Motional Emf]]
<h1><strong>Adeline Boswell Fall 2019</strong></h1>
[[File:Motional EMF Example.jpg]]
*[[Motional Emf using Faraday's Law]]
</div>
</div>http://www.physicsbook.gatech.edu/Special:RecentChangesLinked/Main_Page
<div class="toccolours mw-collapsible mw-collapsed">
If you have a bar attached to two rails, and the rails are connected by a resistor, you have effectively created a circuit. As the bar moves, it creates an "electromotive force"
[[File:MotEMFCR.jpg]]


====Magnetic force====
====Magnetic force====
Line 851: Line 851:
===Week 1===
===Week 1===
<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">
 
====Classical Physics====
==Classical Physics==
<div class="mw-collapsible-content">
Contributions by Anika Jones Fall 2022
*[[Classical Physics]]
 
</div>
Classical physics encompasses the theories of mechanics, electromagnetism and thermodynamics that help explain a large part of the everyday things that go on around us on a macroscopic scale, which predates Modern Physic theories of quantum and relativity that explains things that are on the smaller, microscopic level.
</div>
 
In classical physics, observations about things can be seen using the human senses. For example, Newton’s observation that gravity caused things to fall to the ground leading to his three physics laws that are still relevant today. Classical physics helps to answer the whys about the things that we observe and experience in the world around us, from the path of the sun in the sky to the reaction of boiling a pot of water.
 
Classical physics laid the groundwork for modern physics theories to understand those things around us that we can not see in the traditional way but observed behaviors that are happening on a microscopic level.
 
[[File:ClassicalPhysics.png|shows diagram|500 px|]]
<ref>https://www.physicsbook.gatech.edu/images/e/e6/Classical_Physics.png</ref>
 
 
==Examples==
 
Be sure to show all steps in your solution and include diagrams whenever possible
 
===Simple===
===Middling===
===Difficult===
 
==Connectedness==
#How is this topic connected to something that you are interested in?
#How is it connected to your major?
#Is there an interesting industrial application?
 
==History==
 
Classical Physics predates 1900 physics theories that help us understand phenomena around us, all thanks to works of Sir Isaac Newton, Galileo Galilei, and James Maxwell just to name a few. From their observations and research, we have a better understanding of how and why things operate the way they do around us that led to technological advances that we enjoy today in making a way of life easier.
Without any fancy and high-tech equipment, these scientists use simple observations and equipment to build the foundation of physics as we know it today that has been proven over hundreds of years to still be valid. From Newton’s law that force is equal to mass times acceleration to Maxwell’s equation for electromagnetism. Without their contributions our world today would look a lot different.
 
== See also ==
 
For further exploration, see related topics in classical mechanics, electromagnetism, and thermodynamics. These topics are what make up the theories of classical physics.
 
===Further reading===
Jefimenko, O. (1989). Electricity and Magnetism. An Introduction to the Theory of Electric and Magnetic Fields (2nd ed.). Electret Scientific. ISBN 978-0917406089. Jefimenko, Oleg D.; Major, Schwab S. (November 1967). "Electricity and Magnetism". American Journal of Physics. 35 (11): 1100–1101. Bibcode:1967AmJPh..35.1100J. doi:10.1119/1.1973766. hdl:10821/2745. ISSN 0002-9505.
 
Morin, David (2005). Introduction to Classical Mechanics: With Problems and Solutions. Cambridge University Press. ISBN 9780521876223.
 
Taylor, John (2005). Classical Mechanics. University Science Books. ISBN 189138922X.
 
Van Ness, H. C. (1983). Understanding Thermodynamics. Dover Publications. ISBN 978-0486632773.
 
===External links===
 
https://phys.libretexts.org/Bookshelves/University_Physics/Book%3A_Mechanics_and_Relativity_(Idema)/01%3A_Introduction_to_Classical_Mechanics
 
https://kids.kiddle.co/Classical_physics
 
https://youtu.be/Q6Gw08pwhws
 
==References==
 
1. Harris, Randy. Modern Physics. San Francisco, CA: Pearson 2008. Print.
 
2. Kleppner, Daniel, and Kolenkow, Robert. An Introduction to Mechanics. Cambridge University Press 2010. Print.
 


[[Category:Which Category did you place this in?]]
[[Category:Which Category did you place this in?]]


===Week 2===
===Weeks 2 and 3===
<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">
====Special Relativity====
====Special Relativity and the Lorentz Transformation====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
*[[Frame of Reference]]
*[[Frame of Reference]]
Line 930: Line 875:
</div>
</div>


===Week 3===
===Week 4===
<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">
====Photons====
====Photons and the Photoelectric Effect====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
*[[Spontaneous Photon Emission]]
*[[Spontaneous Photon Emission]]
Line 943: Line 888:
</div>
</div>


===Week 4===
===Weeks 5 and 6===
<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">
====Matter Waves====
====Matter Waves and Wave-Particle Duality====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
*[[Wave-Particle Duality]]
*[[Wave-Particle Duality]]
Line 953: Line 898:
</div>
</div>


===Week 7===
<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">
====Wave Mechanics====
<div class="mw-collapsible-content">
*[[Standing Waves]]
*[[Wavelength]]
*[[Wavelength and Frequency]]
*[[Mechanical Waves]]
*[[Transverse and Longitudinal Waves]]
*[[Fourier Series and Transform]]
</div>
</div>


===Week 8===
<div class="toccolours mw-collapsible mw-collapsed">
====Schrödinger Equation====
====Schrödinger Equation====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
Line 961: Line 919:
*[[Solution for a Single Particle in an Infinite Quantum Well - Darin]]
*[[Solution for a Single Particle in an Infinite Quantum Well - Darin]]
*[[Solution for a Single Particle in a Semi-Infinite Quantum Well]]
*[[Solution for a Single Particle in a Semi-Infinite Quantum Well]]
*[[Quantum Harmonic Oscillator]]
*[[Solution for Simple Harmonic Oscillator]]
*[[Solution for Simple Harmonic Oscillator]]
</div>
</div>
</div>
</div>


===Week 5===
===Week 9===
<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">
====Wave Mechanics====
====Quantum Mechanics====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
*[[Standing Waves]]
*[[Quantum Tunneling through Potential Barriers]]
*[[Wavelength]]
*[[Wavelength and Frequency]]
*[[Mechanical Waves]]
*[[Transverse and Longitudinal Waves]]
</div>
</div>
</div>
</div>


<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">
====Quantum Mechanics====
====The Hydrogen Atom====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
*[[Quantum Tunneling through Potential Barriers]]
*[[Quantum Theory]]
*[[Atomic Theory]]
</div>
</div>
</div>
</div>


===Week 6===
===Week 10===
<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">
====Rutherford-Bohr Model====
====Rutherford-Bohr Model====
Line 995: Line 951:
</div>
</div>


===Week 7===
===Week 11===
<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">
====The Hydrogen Atom====
====Many-Electron Atoms====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
*[[Quantum Theory]]
*[[Quantum Theory]]
*[[Atomic Theory]]
*[[Atomic Theory]]
*[[Pauli exclusion principle]]
</div>
</div>
</div>
</div>


===Week 8===
===Week 12===
<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">
====Many-Electron Atoms====
====The Nucleus====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
*[[Quantum Theory]]
*[[Nucleus]]
*[[Atomic Theory]]
*[[Pauli exclusion principle]]
</div>
</div>
</div>
</div>


===Week 9===
===Week 13===
<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">
====Molecules====
====Molecules====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
</div>
*[[Molecules]]
*[[Molecules]]
*[[Covalent Bonds]]
*[[Covalent Bonds]]
</div>
</div>
</div>


===Week 10===
===Week 14===
<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">
====Statistical Physics====
====Statistical Physics====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
*[[Application of Statistics in Physics]]
</div>
</div>
*[[Application of Statistics in Physics]]
*[[Temperature & Entropy]]
</div>
</div>
<div class="mw-collapsible-content">


===Week 11===
===Week 15===
<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">
====Condensed Matter Physics====
====Statistical Physics====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
*[[Temperature & Entropy]]
</div>
</div>
</div>
</div>


===Week 12===
===Additional Topics===
<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">
====The Nucleus====
====Condensed Matter Physics====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
*[[Nucleus]]
</div>
</div>
</div>
</div>
===Week 13===
<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">
====Nuclear Physics====
====Nuclear Physics====
Line 1,056: Line 1,007:
</div>
</div>
</div>
</div>
===Week 14===
<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">
====Particle Physics====
====Particle Physics====

Revision as of 08:32, 4 October 2024

Georgia Tech Student Wiki for Introductory Physics.

This resource was created so that students can contribute and curate content to help those with limited or no access to a textbook. When reading this website, please correct any errors you may come across. If you read something that isn't clear, please consider revising it for future students!

Looking to make a contribution?

  1. Pick one of the topics from intro physics listed below
  2. Add content to that topic or improve the quality of what is already there.
  3. Need to make a new topic? Edit this page and add it to the list under the appropriate category. Then copy and paste the default Template into your new page and start editing.

Please remember that this is not a textbook and you are not limited to expressing your ideas with only text and equations. Whenever possible embed: pictures, videos, diagrams, simulations, computational models (e.g. Glowscript), and whatever content you think makes learning physics easier for other students.

Source Material

All of the content added to this resource must be in the public domain or similar free resource. If you are unsure about a source, contact the original author for permission. That said, there is a surprisingly large amount of introductory physics content scattered across the web. Here is an incomplete list of intro physics resources (please update as needed).

  • A physics resource written by experts for an expert audience Physics Portal
  • A wiki written for students by a physics expert MSU Physics Wiki
  • A wiki book on modern physics Modern Physics Wiki
  • A collection of 26 volumes of lecture notes by Prof. Wheeler of Reed College [1]
  • The MIT open courseware for intro physics MITOCW Wiki
  • An online concept map of intro physics HyperPhysics
  • Interactive physics simulations PhET
  • OpenStax intro physics textbooks: Vol1, Vol2, Vol3
  • The Open Source Physics project is a collection of online physics resources OSP
  • A resource guide compiled by the AAPT for educators ComPADRE
  • The Feynman lectures on physics are free to read Feynman
  • Final Study Guide for Modern Physics II created by a lab TA Modern Physics II Final Study Guide

Resources


Physics 1

Week 1

GlowScript 101

Vectors and Units

Week 2

Iterative Prediction with a Constant Force

Week 3

Analytic Prediction with a Constant Force

Week 4

Week 5

Week 6

Identifying Forces

Week 7

Jeet Bhatkar

Energy Principle

The Energy Principle is a fundamental concept in physics that describes the relationship between different forms of energy and their conservation within a system. Understanding the Energy Principle is crucial for analyzing the motion and interactions of objects in various physical scenarios.

Kinetic energy is the energy an object possesses due to its motion.

Potential energy arises from the position of an object relative to its surroundings. Common forms of potential energy include gravitational potential energy and elastic potential energy.

Work and energy are closely related concepts. Work ( 𝑊) done on an object is defined as the force ( 𝐹) applied to the object multiplied by the displacement ( 𝑑) of the object in the direction of the force: The Energy Principle states that the total mechanical energy of a system remains constant if only conservative forces (forces that depend only on the positions of the objects) are acting on the system.

The principle of conservation of energy states that the total energy of an isolated system remains constant over time. In other words, energy cannot be created or destroyed, only transformed from one form to another. This principle is a fundamental concept in physics and has wide-ranging applications in mechanics, thermodynamics, and other branches of science.

Week 8

Work by Non-Constant Forces

Week 9

Week 10

Choice of System

Week 11

Different Models of a System

Week 12

Conservation of Momentum

Week 13

Week 14

Week 15

Physics 2

Week 1

Electric force

Electric field of a point particle

Week 2

Week 3

Week 4

Field of a charged rod

Field of a charged ring/disk/capacitor

Week 5

Potential energy

Sign of a potential difference

Week 6

Electric field and potential in an insulator

Moving charges in a magnetic field

Moving charges, electron current, and conventional current

Week 7

Magnetic field of a current-carrying loop

Magnetic field of a Charged Disk

Atomic structure of magnets

Week 8

Steady state current

Kirchoff's Laws

Electric fields and energy in circuits

Week 9

Electric field and potential in circuits with capacitors

Week 10

Week 12

Week 13

Semiconductors

Week 14

Circuits revisited

Week 15

Electromagnetic Radiation

Sparks in the air

Physics 3

Week 1

Classical Physics

Weeks 2 and 3

Week 4

Weeks 5 and 6

Week 7

Week 8

Week 9

The Hydrogen Atom

Week 10

Week 11

Week 12

The Nucleus

Week 13

Week 14

Week 15

Statistical Physics

Additional Topics

Condensed Matter Physics