Main Page: Difference between revisions

From Physics Book
Jump to navigation Jump to search
Tag: Manual revert
(6 intermediate revisions by 4 users not shown)
Line 190: Line 190:
====Identifying Forces====
====Identifying Forces====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
====Isabel Hollhumer F24====
*[[Free Body Diagram]]
*[[Free Body Diagram]]
*[[Inclined Plane]]
*[[Inclined Plane]]
Line 208: Line 209:
===Week 7===
===Week 7===
<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">
====Jeet Bhatkar====
====Energy Principle====
====Energy Principle====
The Energy Principle is a fundamental concept in physics that describes the relationship between different forms of energy and their conservation within a system. Understanding the Energy Principle is crucial for analyzing the motion and interactions of objects in various physical scenarios.
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
*[[Energy of a Single Particle]]
 
*[[Kinetic Energy]]
*[[Kinetic Energy]]
Kinetic energy is the energy an object possesses due to its motion.
*[[Work/Energy]]
*[[Work/Energy]]
Potential energy arises from the position of an object relative to its surroundings. Common forms of potential energy include gravitational potential energy and elastic potential energy.
*[[The Energy Principle]]
*[[The Energy Principle]]
Work and energy are closely related concepts. Work (
𝑊) done on an object is defined as the force (
𝐹) applied to the object multiplied by the displacement (
𝑑) of the object in the direction of the force:
The Energy Principle states that the total mechanical energy of a system remains constant if only conservative forces (forces that depend only on the positions of the objects) are acting on the system.
*[[Conservation of Energy]]
*[[Conservation of Energy]]
The principle of conservation of energy states that the total energy of an isolated system remains constant over time. In other words, energy cannot be created or destroyed, only transformed from one form to another. This principle is a fundamental concept in physics and has wide-ranging applications in mechanics, thermodynamics, and other branches of science.
</div>
</div>
</div>
</div>
Line 421: Line 433:


<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">
====Dipoles====
====Dipoles====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
Line 583: Line 596:
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
*[[Magnetic Field of a Long Straight Wire]]
*[[Magnetic Field of a Long Straight Wire]]
*[[Magnetic Field of a Curved Wire]]
</div>
</div>
</div>
</div>

Revision as of 08:32, 4 October 2024

Georgia Tech Student Wiki for Introductory Physics.

This resource was created so that students can contribute and curate content to help those with limited or no access to a textbook. When reading this website, please correct any errors you may come across. If you read something that isn't clear, please consider revising it for future students!

Looking to make a contribution?

  1. Pick one of the topics from intro physics listed below
  2. Add content to that topic or improve the quality of what is already there.
  3. Need to make a new topic? Edit this page and add it to the list under the appropriate category. Then copy and paste the default Template into your new page and start editing.

Please remember that this is not a textbook and you are not limited to expressing your ideas with only text and equations. Whenever possible embed: pictures, videos, diagrams, simulations, computational models (e.g. Glowscript), and whatever content you think makes learning physics easier for other students.

Source Material

All of the content added to this resource must be in the public domain or similar free resource. If you are unsure about a source, contact the original author for permission. That said, there is a surprisingly large amount of introductory physics content scattered across the web. Here is an incomplete list of intro physics resources (please update as needed).

  • A physics resource written by experts for an expert audience Physics Portal
  • A wiki written for students by a physics expert MSU Physics Wiki
  • A wiki book on modern physics Modern Physics Wiki
  • A collection of 26 volumes of lecture notes by Prof. Wheeler of Reed College [1]
  • The MIT open courseware for intro physics MITOCW Wiki
  • An online concept map of intro physics HyperPhysics
  • Interactive physics simulations PhET
  • OpenStax intro physics textbooks: Vol1, Vol2, Vol3
  • The Open Source Physics project is a collection of online physics resources OSP
  • A resource guide compiled by the AAPT for educators ComPADRE
  • The Feynman lectures on physics are free to read Feynman
  • Final Study Guide for Modern Physics II created by a lab TA Modern Physics II Final Study Guide

Resources


Physics 1

Week 1

GlowScript 101

Vectors and Units

Week 2

Iterative Prediction with a Constant Force

Week 3

Analytic Prediction with a Constant Force

Week 4

Week 5

Week 6

Identifying Forces

Week 7

Jeet Bhatkar

Energy Principle

The Energy Principle is a fundamental concept in physics that describes the relationship between different forms of energy and their conservation within a system. Understanding the Energy Principle is crucial for analyzing the motion and interactions of objects in various physical scenarios.

Kinetic energy is the energy an object possesses due to its motion.

Potential energy arises from the position of an object relative to its surroundings. Common forms of potential energy include gravitational potential energy and elastic potential energy.

Work and energy are closely related concepts. Work ( 𝑊) done on an object is defined as the force ( 𝐹) applied to the object multiplied by the displacement ( 𝑑) of the object in the direction of the force: The Energy Principle states that the total mechanical energy of a system remains constant if only conservative forces (forces that depend only on the positions of the objects) are acting on the system.

The principle of conservation of energy states that the total energy of an isolated system remains constant over time. In other words, energy cannot be created or destroyed, only transformed from one form to another. This principle is a fundamental concept in physics and has wide-ranging applications in mechanics, thermodynamics, and other branches of science.

Week 8

Work by Non-Constant Forces

Week 9

Week 10

Choice of System

Week 11

Different Models of a System

Week 12

Conservation of Momentum

Week 13

Week 14

Week 15

Physics 2

Week 1

Electric force

Electric field of a point particle

Week 2

Week 3

Week 4

Field of a charged rod

Field of a charged ring/disk/capacitor

Week 5

Potential energy

Sign of a potential difference

Week 6

Electric field and potential in an insulator

Moving charges in a magnetic field

Moving charges, electron current, and conventional current

Week 7

Magnetic field of a current-carrying loop

Magnetic field of a Charged Disk

Atomic structure of magnets

Week 8

Steady state current

Kirchoff's Laws

Electric fields and energy in circuits

Week 9

Electric field and potential in circuits with capacitors

Week 10

Week 12

Week 13

Semiconductors

Week 14

Circuits revisited

Week 15

Electromagnetic Radiation

Sparks in the air

Physics 3

Week 1

Classical Physics

Weeks 2 and 3

Week 4

Weeks 5 and 6

Week 7

Week 8

Week 9

The Hydrogen Atom

Week 10

Week 11

Week 12

The Nucleus

Week 13

Week 14

Week 15

Statistical Physics

Additional Topics

Condensed Matter Physics