Main Page: Difference between revisions

From Physics Book
Jump to navigation Jump to search
 
(828 intermediate revisions by more than 100 users not shown)
Line 1: Line 1:
__NOTOC__
__NOTOC__
Welcome to the Georgia Tech Wiki for Intro Physics. This resources was created so that students can contribute and curate content to help those with limited or no access to a textbook.  When reading this website, please correct any errors you may come across. If you read something that isn't clear, please consider revising it!
= '''Georgia Tech Student Wiki for Introductory Physics.''' =
 
This resource was created so that students can contribute and curate content to help those with limited or no access to a textbook.  When reading this website, please correct any errors you may come across. If you read something that isn't clear, please consider revising it for future students!


Looking to make a contribution?
Looking to make a contribution?
#Pick a specific topic from intro physics
#Pick one of the topics from intro physics listed below
#Add that topic, as a link to a new page, under the appropriate category listed below by editing this page.
#Add content to that topic or improve the quality of what is already there.
#Copy and paste the default [[Template]] into your new page and start editing.
#Need to make a new topic? Edit this page and add it to the list under the appropriate category. Then copy and paste the default [[Template]] into your new page and start editing.


Please remember that this is not a textbook and you are not limited to expressing your ideas with only text and equations.  Whenever possible embed: pictures, videos, diagrams, simulations, computational models (e.g. Glowscript), and whatever content you think makes learning physics easier for other students.
Please remember that this is not a textbook and you are not limited to expressing your ideas with only text and equations.  Whenever possible embed: pictures, videos, diagrams, simulations, computational models (e.g. Glowscript), and whatever content you think makes learning physics easier for other students.
Line 12: Line 14:
All of the content added to this resource must be in the public domain or similar free resource.  If you are unsure about a source, contact the original author for permission. That said, there is a surprisingly large amount of introductory physics content scattered across the web.  Here is an incomplete list of intro physics resources (please update as needed).
All of the content added to this resource must be in the public domain or similar free resource.  If you are unsure about a source, contact the original author for permission. That said, there is a surprisingly large amount of introductory physics content scattered across the web.  Here is an incomplete list of intro physics resources (please update as needed).
* A physics resource written by experts for an expert audience [https://en.wikipedia.org/wiki/Portal:Physics Physics Portal]
* A physics resource written by experts for an expert audience [https://en.wikipedia.org/wiki/Portal:Physics Physics Portal]
* A wiki written for students by a physics expert [http://p3server.pa.msu.edu/coursewiki/doku.php?id=183_notes MSU Physics Wiki]
* A wiki book on modern physics [https://en.wikibooks.org/wiki/Modern_Physics Modern Physics Wiki]
* A wiki book on modern physics [https://en.wikibooks.org/wiki/Modern_Physics Modern Physics Wiki]
* A collection of 26 volumes of lecture notes by Prof. Wheeler of Reed College [https://rdc.reed.edu/c/wheeler/home/]
* The MIT open courseware for intro physics [http://ocw.mit.edu/resources/res-8-002-a-wikitextbook-for-introductory-mechanics-fall-2009/index.htm MITOCW Wiki]
* The MIT open courseware for intro physics [http://ocw.mit.edu/resources/res-8-002-a-wikitextbook-for-introductory-mechanics-fall-2009/index.htm MITOCW Wiki]
* An online concept map of intro physics [http://hyperphysics.phy-astr.gsu.edu/hbase/hph.html HyperPhysics]
* An online concept map of intro physics [http://hyperphysics.phy-astr.gsu.edu/hbase/hph.html HyperPhysics]
* Interactive physics simulations [https://phet.colorado.edu/en/simulations/category/physics PhET]
* Interactive physics simulations [https://phet.colorado.edu/en/simulations/category/physics PhET]
* OpenStax algebra based intro physics textbook [https://openstaxcollege.org/textbooks/college-physics College Physics]
* OpenStax intro physics textbooks: [https://openstax.org/details/books/university-physics-volume-1  Vol1], [https://openstax.org/details/books/university-physics-volume-2  Vol2], [https://openstax.org/details/books/university-physics-volume-3  Vol3]
* The Open Source Physics project is a collection of online physics resources [http://www.opensourcephysics.org/ OSP]
* The Open Source Physics project is a collection of online physics resources [http://www.opensourcephysics.org/ OSP]
* A resource guide compiled by the [http://www.aapt.org/ AAPT] for educators [http://www.compadre.org/ ComPADRE]
* A resource guide compiled by the [http://www.aapt.org/ AAPT] for educators [http://www.compadre.org/ ComPADRE]
* The Feynman lectures on physics are free to read [http://www.feynmanlectures.caltech.edu/ Feynman]
* Final Study Guide for Modern Physics II created by a lab TA [https://docs.google.com/document/d/1_6GktDPq5tiNFFYs_ZjgjxBAWVQYaXp_2Imha4_nSyc/edit?usp=sharing Modern Physics II Final Study Guide]


== Organizing Categories ==
== Resources ==
These are the broad, overarching categories, that we cover in two semester of introductory physics. You can add subcategories or make a new category as needed. A single topic should direct readers to a page in one of these catagories.
* Commonly used wiki commands [https://en.wikipedia.org/wiki/Help:Cheatsheet Wiki Cheatsheet]
* A guide to representing equations in math mode [https://en.wikipedia.org/wiki/Help:Displaying_a_formula Wiki Math Mode]
* A page to keep track of all the physics [[Constants]]
* A listing of [[Notable Scientist]] with links to their individual pages


<div style="float:left; width:30%; padding:1%;">
==Physics 1==
===Week 1===
<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">
===Interactions===
====GlowScript 101====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
*[[Kinds of Matter]]
*[[Python Syntax]]
**[[Ball and Spring Model of Matter]]
*[[GlowScript]]
*[[Detecting Interactions]]
*[[Escape Velocity]]
*[[Fundamental Interactions]]
*[[Determinism]]
*[[System & Surroundings]]
*[[Free Body Diagram]]
*[[Newton's First Law of Motion]]
*[[Newton's Second Law of Motion]]
*[[Newton's Third Law of Motion]]
*[[Gravitational Force]]
*[[Electric Force]]
*[[Conservation of Energy]]
*[[Conservation of Charge]]
*[[Terminal Speed]]
*[[Simple Harmonic Motion]]
*[[Speed and Velocity]]
*[[Electric Polarization]]
*[[Perpetual Freefall (Orbit)]]
*[[2-Dimensional Motion]]
*[[Center of Mass]]
*[[Reaction Time]]
*[[Time Dilation]]
*[[Pauli exclusion principle]]
</div>
</div>
</div>
</div>
Line 56: Line 47:
<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">


===Modeling with VPython===
====VPython====
 
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
*[[VPython]]
*[[VPython]]
Line 63: Line 55:
*[[VPython Functions]]
*[[VPython Functions]]
*[[VPython Lists]]
*[[VPython Lists]]
*[[VPython Loops]]
*[[VPython Multithreading]]
*[[VPython Multithreading]]
*[[VPython Animation]]
*[[VPython Animation]]
*[[VPython Objects]]
*[[VPython 3D Objects]]
*[[VPython 3D Objects]]
*[[VPython Reference]]
*[[VPython MapReduceFilter]]
*[[VPython GUIs]]
</div>
</div>
</div>
</div>
Line 71: Line 68:
<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">


===Theory===
====Vectors and Units====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
*[[Einstein's Theory of Special Relativity]]
*[[Vectors]]
*[[Einstein's Theory of General Relativity]]
*[[SI Units]]
*[[Quantum Theory]]
*[[Maxwell's Electromagnetic Theory]]
*[[Atomic Theory]]
*[[String Theory]]
*[[Elementary Particles and Particle Physics Theory]]
*[[Law of Gravitation]]
*[[Newton's Laws]]
*[[Higgs field]]
*[[Supersymmetry]]
</div>
</div>
</div>
</div>
Line 89: Line 77:
<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">


===Notable Scientists===
====Interactions====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
*[[Alexei Alexeyevich Abrikosov]]
*[[Types of Interactions and How to Detect Them]]
*[[Christian Doppler]]
*[[Albert Einstein]]
*[[Ernest Rutherford]]
*[[Joseph Henry]]
*[[Michael Faraday]]
*[[J.J. Thomson]]
*[[James Maxwell]]
*[[Robert Hooke]]
*[[Carl Friedrich Gauss]]
*[[Nikola Tesla]]
*[[Andre Marie Ampere]]
*[[Sir Isaac Newton]]
*[[J. Robert Oppenheimer]]
*[[Oliver Heaviside]]
*[[Rosalind Franklin]]
*[[Enrico Fermi]]
*[[Robert J. Van de Graaff]]
*[[Charles de Coulomb]]
*[[Hans Christian Ørsted]]
*[[Philo Farnsworth]]
*[[Niels Bohr]]
*[[Georg Ohm]]
*[[Galileo Galilei]]
*[[Gustav Kirchhoff]]
*[[Max Planck]]
*[[Heinrich Hertz]]
*[[Edwin Hall]]
*[[James Watt]]
*[[Count Alessandro Volta]]
*[[Josiah Willard Gibbs]]
*[[Richard Phillips Feynman]]
*[[Sir David Brewster]]
*[[Daniel Bernoulli]]
*[[William Thomson]]
*[[Leonhard Euler]]
*[[Robert Fox Bacher]]
*[[Stephen Hawking]]
*[[Amedeo Avogadro]]
*[[Wilhelm Conrad Roentgen]]
*[[Pierre Laplace]]
*[[Thomas Edison]]
*[[Hendrik Lorentz]]
*[[Jean-Baptiste Biot]]
*[[Lise Meitner]]
*[[Lisa Randall]]
*[[Felix Savart]]
*[[Heinrich Lenz]]
*[[Max Born]]
*[[Archimedes]]
*[[Jean Baptiste Biot]]
*[[Carl Sagan]]
*[[Eugene Wigner]]
*[[Marie Curie]]
*[[Pierre Curie]]
*[[Werner Heisenberg]]
*[[Johannes Diderik van der Waals]]
*[[Louis de Broglie]]
*[[Aristotle]]
*[[Émilie du Châtelet]]
*[[Blaise Pascal]]
*[[Siméon Denis Poisson]]
*[[Benjamin Franklin]]
*[[James Chadwick]]
*[[Henry Cavendish]]
*[[Thomas Young]]
*[[James Prescott Joule]]
*[[John Bardeen]]
*[[Leo Baekeland]]
*[[Alhazen]]
*[[Willebrord Snell]]
*[[Fritz Walther Meissner]]
*[[Johannes Kepler]]
*[[Johann Wilhelm Ritter]]
*[[Philipp Lenard]]
*[[Robert A. Millikan]]
*[[Joseph Louis Gay-Lussac]]
*[[Guglielmo Marconi]]
*[[William Lawrence Bragg]]
*[[Robert Goddard]]
*[[Léon Foucault]]
*[[Henri Poincaré]]
*[[Steven Weinberg]]
*[[Arthur Compton]]
*[[Pythagoras of Samos]]
*[[Subrahmanyan Chandrasekhar]]
*[[Wilhelm Eduard Weber]]
*[[Edmond Becquerel]]
*[[Joseph Rotblat]]
*[[Carl David Anderson]]
*[[Hermann von Helmholtz]]
*[[Nicolas Leonard Sadi Carnot]]
*[[Wallace Carothers]]
*[[David J. Wineland]]
*[[Rudolf Clausius]]
*[[Edward L. Norton]]
*[[Shuji Nakamura]]
*[[Pierre Laplace Pt. 2]]
*[[William B. Shockley]]
*[[Osborne Reynolds]]
*[[Alexander Graham Bell]]
*[[Hans Bethe]]
*[[Erwin Schrodinger]]
*[[Wolfgang Pauli]]
*[[Paul Dirac]]
 
</div>
</div>
</div>
</div>


<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">
 
====Velocity and Momentum====
===Properties of Matter===
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
*[[Newton's First Law of Motion]]
*[[Mass]]
*[[Mass]]
*[[Velocity]]
*[[Velocity]]
*[[Speed]]
*[[Speed vs Velocity]]
*[[Relative Velocity]]
*[[Relative Velocity]]
*[[Derivation of Average Velocity]]
*[[2-Dimensional Motion]]
*[[3-Dimensional Position and Motion]]
</div>
</div>
===Week 2===
<div class="toccolours mw-collapsible mw-collapsed">
====Momentum and the Momentum Principle====
<div class="mw-collapsible-content">
*[[Linear Momentum]]
*[[Newton's Second Law: the Momentum Principle]]
*[[Impulse and Momentum]]
*[[Net Force]]
*[[Inertia]]
*[[Acceleration]]
*[[Relativistic Momentum]]
<!-- Kinematics and Projectile Motion relocated to Week 3 per advice of Dr. Greco -->
</div>
</div>
<div class="toccolours mw-collapsible mw-collapsed">
====Iterative Prediction with a Constant Force====
<div class="mw-collapsible-content">
*[[Iterative Prediction]]
</div>
</div>
===Week 3===
<div class="toccolours mw-collapsible mw-collapsed">
====Analytic Prediction with a Constant Force====
<div class="mw-collapsible-content">
<!-- *[[Analytical Prediction]] Deprecated -->
*[[Kinematics]]
*[[Projectile Motion]]
</div>
</div>
<div class="toccolours mw-collapsible mw-collapsed">
====Iterative Prediction with a Varying Force====
<div class="mw-collapsible-content">
*[[Fundamentals of Iterative Prediction with Varying Force]]
*[[Spring_Force]]
*[[Simple Harmonic Motion]]
<!--*[[Hooke's Law]] folded into simple harmonic motion-->
<!--*[[Spring Force]] folded into simple harmonic motion-->
*[[Iterative Prediction of Spring-Mass System]]
*[[Terminal Speed]]
*[[Predicting Change in multiple dimensions]]
*[[Two Dimensional Harmonic Motion]]
*[[Determinism]]
</div>
</div>
===Week 4===
<div class="toccolours mw-collapsible mw-collapsed">
====Fundamental Interactions====
<div class="mw-collapsible-content">
*[[Gravitational Force]]
*[[Gravitational Force Near Earth]]
*[[Gravitational Force in Space and Other Applications]]
*[[3 or More Body Interactions]]
<!--[[Fluid Mechanics]]-->
*[[Electric Force]]
*[[Introduction to Magnetic Force]]
*[[Strong and Weak Force]]
*[[Reciprocity]]
*[[Conservation of Momentum]]
</div>
</div>
===Week 5===
<div class="toccolours mw-collapsible mw-collapsed">
====Properties of Matter====
<div class="mw-collapsible-content">
*[[Kinds of Matter]]
*[[Ball and Spring Model of Matter]]
*[[Density]]
*[[Density]]
*[[Charge]]
*[[Length and Stiffness of an Interatomic Bond]]
*[[Spin]]
*[[Young's Modulus]]
*[[SI Units]]
*[[Speed of Sound in Solids]]
*[[Heat Capacity]]
*[[Specific Heat]]
*[[Wavelength]]
*[[Conductivity]]
*[[Malleability]]
*[[Malleability]]
*[[Ductility]]
*[[Weight]]
*[[Weight]]
*[[Hardness]]
*[[Boiling Point]]
*[[Boiling Point]]
*[[Melting Point]]
*[[Melting Point]]
*[[Inertia]]
*[[Change of State]]
*[[Non-Newtonian Fluids]]
*[[Ferrofluids]]
*[[Color]]
*[[Temperature]]
</div>
</div>
</div>
</div>


===Week 6===
<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">
 
====Identifying Forces====
===Contact Interactions===
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
* [[Young's Modulus]]
====Isabel Hollhumer F24====
* [[Friction]]
*[[Free Body Diagram]]
* [[Tension]]
*[[Inclined Plane]]
* [[Hooke's Law]]
*[[Centripetal Force and Curving Motion]]
*[[Compression or Normal Force]]
*[[Compression or Normal Force]]
* [[Length and Stiffness of an Interatomic Bond]]
*[[Tension]]
* [[Speed of Sound in Solids]]
* [[Iterative Prediction of Spring-Mass System]]
</div>
</div>
</div>
</div>
<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">


===Momentum===
====Curving Motion====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
* [[Vectors]]
*[[Curving Motion]]
* [[Kinematics]]
*[[Centripetal Force and Curving Motion]]
* [[Conservation of Momentum]]
*[[Perpetual Freefall (Orbit)]]
* [[Predicting Change in multiple dimensions]]
* [[Derivation of the Momentum Principle]]
* [[Momentum Principle]]
* [[Impulse Momentum]]
* [[Curving Motion]]
* [[Projectile Motion]]
* [[Multi-particle Analysis of Momentum]]
* [[Iterative Prediction]]
* [[Analytical Prediction]]
* [[Newton's Laws and Linear Momentum]]
* [[Net Force]]
* [[Center of Mass]]
* [[Momentum at High Speeds]]
* [[Change in Momentum in Time for Curving Motion]]
* [[Momentum with respect to external Forces]]
</div>
</div>
</div>
</div>


===Week 7===
<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">
====Jeet Bhatkar====


===Angular Momentum===
====Energy Principle====
The Energy Principle is a fundamental concept in physics that describes the relationship between different forms of energy and their conservation within a system. Understanding the Energy Principle is crucial for analyzing the motion and interactions of objects in various physical scenarios.
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
* [[The Moments of Inertia]]
* [[Moment of Inertia for a cylinder]]
* [[Rotation]]
* [[Torque]]
* [[Systems with Zero Torque]]
* [[Systems with Nonzero Torque]]
* [[Torque vs Work]]
* [[Angular Impulse]]
* [[Right Hand Rule]]
* [[Angular Velocity]]
* [[Predicting the Position of a Rotating System]]
* [[Translational Angular Momentum]]
* [[The Angular Momentum Principle]]
* [[Angular Momentum of Multiparticle Systems]]
* [[Rotational Angular Momentum]]
* [[Total Angular Momentum]]
* [[Gyroscopes]]
* [[Angular Momentum Compared to Linear Momentum]]


*[[Kinetic Energy]]
Kinetic energy is the energy an object possesses due to its motion.
*[[Work/Energy]]
Potential energy arises from the position of an object relative to its surroundings. Common forms of potential energy include gravitational potential energy and elastic potential energy.
*[[The Energy Principle]]
Work and energy are closely related concepts. Work (
𝑊) done on an object is defined as the force (
𝐹) applied to the object multiplied by the displacement (
𝑑) of the object in the direction of the force:
The Energy Principle states that the total mechanical energy of a system remains constant if only conservative forces (forces that depend only on the positions of the objects) are acting on the system.
*[[Conservation of Energy]]
The principle of conservation of energy states that the total energy of an isolated system remains constant over time. In other words, energy cannot be created or destroyed, only transformed from one form to another. This principle is a fundamental concept in physics and has wide-ranging applications in mechanics, thermodynamics, and other branches of science.
</div>
</div>
</div>
</div>


===Week 8===
<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">
====Work by Non-Constant Forces====
<div class="mw-collapsible-content">
*[[Work Done By A Nonconstant Force]]
</div>
</div>
<div class="toccolours mw-collapsible mw-collapsed">
====Potential Energy====
<div class="mw-collapsible-content">
*[[Potential Energy]]
*[[Potential Energy of Macroscopic Springs]]
*[[Spring Potential Energy]]
*[[Ball and Spring Model]]
*[[Gravitational Potential Energy]]
*[[Energy Graphs]]
*[[Escape Velocity]]
</div>
</div>


===Energy===
===Week 9===
<div class="toccolours mw-collapsible mw-collapsed">
====Multiparticle Systems====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
*[[The Photoelectric Effect]]
*[[Center of Mass]]
*[[Photons]]
*[[Multi-particle analysis of Momentum]]
*[[The Energy Principle]]
*[[Potential Energy of a Multiparticle System]]
*[[Predicting Change]]
*[[Rest Mass Energy]]
*[[Kinetic Energy]]
*[[Potential Energy]]
**[[Potential Energy for a Magnetic Dipole]]
**[[Potential Energy of a Multiparticle System]]
*[[Work]]
**[[Work Done By A Nonconstant Force]]
*[[Work and Energy for an Extended System]]
*[[Work and Energy for an Extended System]]
*[[Thermal Energy]]
*[[Conservation of Energy]]
*[[Electric Potential]]
*[[Energy Transfer due to a Temperature Difference]]
*[[Gravitational Potential Energy]]
*[[Point Particle Systems]]
*[[Real Systems]]
*[[Spring Potential Energy]]
**[[Ball and Spring Model]]
*[[Internal Energy]]
*[[Internal Energy]]
**[[Potential Energy of a Pair of Neutral Atoms]]
**[[Potential Energy of a Pair of Neutral Atoms]]
*[[Translational, Rotational and Vibrational Energy]]
</div>
*[[Franck-Hertz Experiment]]
</div>
*[[Power (Mechanical)]]
*[[Transformation of Energy]]


*[[Energy Graphs]]
===Week 10===
**[[Energy graphs and the Bohr model]]
<div class="toccolours mw-collapsible mw-collapsed">
*[[Air Resistance]]
====Choice of System====
*[[Electronic Energy Levels]]
<div class="mw-collapsible-content">
*[[System & Surroundings]]
</div>
</div>
<div class="toccolours mw-collapsible mw-collapsed">
====Thermal Energy, Dissipation, and Transfer of Energy====
<div class="mw-collapsible-content">
*[[Thermal Energy]]
*[[Specific Heat]]
*[[Calorific Value(Heat of combustion)]]
*[[First Law of Thermodynamics]]
*[[Second Law of Thermodynamics and Entropy]]
*[[Second Law of Thermodynamics and Entropy]]
*[[Specific Heat Capacity]]
*[[Temperature]]
*[[Transformation of Energy]]
*[[The Maxwell-Boltzmann Distribution]]
*[[The Maxwell-Boltzmann Distribution]]
*[[Electronic Energy Levels and Photons]]
*[[Air Resistance]]
*[[Energy Density]]
*[[The Third Law of Thermodynamics]]
*[[Bohr Model]]
</div>
*[[Quantized energy levels]]
</div>
**[[Spontaneous Photon Emission]]
<div class="toccolours mw-collapsible mw-collapsed">
*[[Path Independence of Electric Potential]]
 
*[[Energy in a Circuit]]
====Rotational and Vibrational Energy====
*[[The Photovoltaic Effect]]
<div class="mw-collapsible-content">
*[[Translational, Rotational and Vibrational Energy]]
*[[Rolling Motion]]
</div>
</div>
</div>
</div>


===Week 11===
<div class="toccolours mw-collapsible mw-collapsed">
====Different Models of a System====
<div class="mw-collapsible-content">
*[[Point Particle Systems]]
*[[Real Systems]]
</div>
</div>
<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">
====Friction====
<div class="mw-collapsible-content">
*[[Friction]]
*[[Static Friction]]
*[[Kinetic Friction]]
</div>
</div>


===Collisions===
===Week 12===
<div class="toccolours mw-collapsible mw-collapsed">
====Conservation of Momentum====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
[[File:opener.png]]
*[[Conservation of Momentum]]
 
</div>
*[[Collisions]]  
</div>
Collisions are events that happen very frequently in our day-to-day world. In the realm of Physics, a collision is defined as any sort of process in which before and after a short time interval there is little interaction, but during that short time interval there are large interactions. When looking at collisions, it is first important to understand two very important principles: the Momentum Principle and the Energy Principle. Both principles serve use when talking of collisions because they provide a way in which to analyze these collisions. Collisions themselves can be categorized into 3 main different types: elastic collisions, inelastic collisions, maximally inelastic collisions. All 3 collisions will get touched on in more detail further on.
<div class="toccolours mw-collapsible mw-collapsed">
  [[File:pe.png]]
====Collisions====
<div class="mw-collapsible-content">
*[[Newton's Third Law of Motion]]
*[[Collisions]]
*[[Elastic Collisions]]
*[[Elastic Collisions]]
A collision is deemed "elastic" when the internal energy of the objects in the system does not change (in other words, change in internal energy equals 0). Because in an elastic collision no kinetic energy is converted over to internal energy, in any elastic collision Kfinal always equals Kinitial.
  [[File:Elco.png]]
*[[Inelastic Collisions]]
*[[Inelastic Collisions]]
A collision is said to be "inelastic" when it is not elastic; therefore, an inelastic collision is an interaction in which some change in internal energy occurs between the colliding objects (in other words, change in internal energy does not equal 0). Examples of such changes that occur between colliding objects include, but are not limited to, things like they get hot, or they vibrate/rotate, or they deform. Because some of the kinetic energy is converted to internal energy during an inelastic collision, Kfinal does not equal Kinitial.
*[[Maximally Inelastic Collision]]
There are a few characteristics that one can search for when identifying inelasticity. These indications include things such as:
*[[Head-on Collision of Equal Masses]]
*Objects stick together after the collision
*[[Head-on Collision of Unequal Masses]]
*An object is in an excited state after the collision
*[[Scattering: Collisions in 2D and 3D]]
*An object becomes deformed after the collision
*[[Rutherford Experiment and Atomic Collisions]]
*The objects become hotter after the collision
*[[Coefficient of Restitution]]
*There exists more vibration or rotation after the collision
</div>
  [[File:inve.gif]]
</div>


===Week 13===
<div class="toccolours mw-collapsible mw-collapsed">
====Rotations====
<div class="mw-collapsible-content">
*[[Rotational Kinematics]]
*[[Eulerian Angles]]
</div>
</div>
<div class="toccolours mw-collapsible mw-collapsed">


*[[Maximally Inelastic Collision]]  
====Angular Momentum====
Maximally inelastic collisions, also known as "sticking collisions", are the most extreme kinds of inelastic collisions. Just as its secondary name implies, a maximally inelastic collision is one in which the colliding objects stick together creating maximum dissipation. This does not automatically mean that the colliding objects stop dead because the law of conservation of momentum. In a maximally inelastic collision, the remaining kinetic energy is present only because total momentum can't change and must be conserved.
<div class="mw-collapsible-content">
  [[File:inel.gif]]
*[[Total Angular Momentum]]
*[[Translational Angular Momentum]]
*[[Rotational Angular Momentum]]
*[[The Angular Momentum Principle]]
*[[Angular Impulse]]
*[[Predicting the Position of a Rotating System]]
*[[The Moments of Inertia]]
*[[Right Hand Rule]]
</div>
</div>


*[[Head-on Collision of Equal Masses]]
===Week 14===
The easiest way to understand this phenomenon is to look at it through an example. In this case, we can analyze it through the common game of billiards. Taking the two, equally massed billiard balls as the system, we can neglect the small frictional force exerted on the balls by the billiard table. The Momentum Principle states that in this head-on collision of billiard balls the total final momentum in the x direction must equal the total initial momentum. However, this alone does not give us the knowledge to know how the momentum will be divided up between the two balls. Considering the law of conservation of energy, we can more accurately depict what will happen. This will also allow for one to identify what kind of collision occurs (elastic, inelastic, or maximally inelastic). It is important to know that head-on collisions of equal masses do not have a definite type of collision associated with it.
<div class="toccolours mw-collapsible mw-collapsed">
  [[File:momentum-real-life-applications-2895.jpg]]   [[File:8ball.gif]]
====Analyzing Motion with and without Torque====
<div class="mw-collapsible-content">
*[[Torque]]
*[[Torque 2]]
*[[Systems with Zero Torque]]
*[[Systems with Nonzero Torque]]
*[[Torque vs Work]]
*[[Gyroscopes]]
</div>
</div>


*[[Head-on Collision of Unequal Masses]]
===Week 15===
Just as with head-on collisions of equal masses, it is easy to understand head-on collisions of unequal masses by viewing it through an example. Let's take for example two balls of unequal masses like a ping-pong ball and a bowling ball. For the purpose of this example (so as to allow for no friction and no other significant external forces), let's imagine these objects collide in outer space inside an orbiting spacecraft. If there were to be a collision between the two, what would one expect to happen? One could expect to see the ping-pong ball collide with the bowling ball and bounce straight back with a very small change of speed. What one might not expect as much is that the bowling ball also moves, just very slowly. Again, this can all be explained through the conservation of momentum and the conservation of energy.
<div class="toccolours mw-collapsible mw-collapsed">
  [[File:mi3e.jpg]]
====Introduction to Quantum Concepts====
<div class="mw-collapsible-content">
*[[Bohr Model]]
*[[Energy graphs and the Bohr model]]
*[[Quantized energy levels]]
*[[Electron transitions]]
*[[Entropy]]
</div>
</div>
</div>


*[[Frame of Reference]]
<div style="float:left; width:30%; padding:1%;">
In the world of Physics, a frame of reference is the perspective from which a system is observed. It can be stationary or sometimes it can even be moving at a constant velocity. In some rare cases, the frame of reference moves at an nonconstant velocity and is deemed "noninertial" meaning the basic laws of physics do not apply. Continuing with the trend of examples, pretend you are at a train station observing trains as they pass by. From your stationary frame of reference, you observe that the passenger on the train is moving at the same velocity as the train. However, from a moving frame of reference, say from the eyes of the train conductor, he would view the train passengers as "anchored" to the train.
  [[File:train.png]]


*[[Scattering: Collisions in 2D and 3D]]
==Physics 2==
Experiments that involve scattering are often used to study the structure and behavior of atoms, nuclei, as well as of other small particles. In an experiment like such, a beam of particles collides with other particles. If it is an atomic or nuclear collision, we are unable to observe the curving trajectories inside the tiny region of interaction. Instead, we can only truly observe the trajectories before and after the collision. This is only possible because the particles are at a farther distance apart and have a very weak mutual interaction; this essentially means that the particles are moving almost in a straight line. A good example which demonstrates scattering is the collision between an alpha particle (the nucleus of a helium atom) and the nucleus of a gold atom. One will understand this phenomenon more in depth after first understanding the Rutherford Experiment which will get touched on later.
===Week 1===
<div class="toccolours mw-collapsible mw-collapsed">
====3D Vectors====


*[[Rutherford Experiment and Atomic Collisions]]
<div class="mw-collapsible-content">
In England in 1911, a famous experiment was performed by a group of scientists led by Mr. Ernest Rutherford. This experiment, later known as "The Rutherford Experiment", was a tremendous breakthrough for its time because it led to the discovery of the nucleus inside the atom. Rutherford's experiment involved the scattering of a high-speed alpha particle (now known as a helium nuclei - 2 protons and 2 neutrons) as it was shot at a thin gold foil (consisting of a nuclei with 79 protons and 118 neutrons). In the experiment, Rutherford and his team discovered that the velocity of the alpha particles was not high enough to allow the particles to make actual contact with the gold nucleus. Although they never actually made contact, it is still deemed a collision because there exists a sizable force between the alpha particle and the gold nucleus over a very short period of time. In conclusion, we say the alpha particle is "scattered" by its interaction with the nucleus of a gold atom and experiments like such are called "scattering" experiments.
*[[Vectors]]
  [[File:ruthef.jpg]]
*[[Right-Hand Rule]]
*[[Right Hand Rule]]
</div>
</div>


*[[Coefficient of Restitution]]
<div class="toccolours mw-collapsible mw-collapsed">
The coefficient of restitution is a measure of the elasticity in a collision. It is the ratio of the differences in velocities before and after the collision. The coefficient is evaluated by taking the difference in the velocities of the colliding objects after the collision and dividing by the difference in the velocities of the colliding objects before the collision.


====Electric field====
<div class="mw-collapsible-content">
*[[Electric Field]]
*[[Electric Field and Electric Potential]]
</div>
</div>


<div class="toccolours mw-collapsible mw-collapsed">


All of the following information was collected from the Matter and Interactions 4th Edition physics textbook...
====Electric force====
<div class="mw-collapsible-content">
*[[Electric Force]]
*[[Lorentz Force]]
</div>
</div>


Chabay, Ruth W., and Bruce A. Sherwood. "Chapter 10: Collisions." Matter & Interactions. Fourth Edition ed. Wiley, 2015. 383-409. Print.
<div class="toccolours mw-collapsible mw-collapsed">


====Electric field of a point particle====
<div class="mw-collapsible-content">
*[[Point Charge]]
</div>
</div>


<div class="toccolours mw-collapsible mw-collapsed">
====Superposition====
<div class="mw-collapsible-content">
*[[Superposition Principle]]
*[[Superposition principle]]
</div>
</div>
</div>
</div>
Line 407: Line 434:
<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">


===Fields===
====Dipoles====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
* [[Electric Field]] of a
*[[Electric Dipole]]
** [[Point Charge]]
*[[Magnetic Dipole]]
** [[Electric Dipole]]
</div>
** [[Capacitor]]
</div>
** [[Charged Rod]]
 
** [[Charged Ring]]
===Week 2===
** [[Charged Disk]]
<div class="toccolours mw-collapsible mw-collapsed">
** [[Charged Spherical Shell]]
====Interactions of charged objects====
** [[Charged Cylinder]]
<div class="mw-collapsible-content">
**[[A Solid Sphere Charged Throughout Its Volume]]
*[[Electric Field]]
*[[Charge Density]]
*[[Electric Potential]]
*[[Superposition Principle]]
*[[Electric Potential]]
**[[Potential Difference Path Independence]]
**[[Potential Difference in a Uniform Field]]
**[[Potential Difference of point charge in a non-Uniform Field]]
**[[Potential Difference at One Location]]
**[[Sign of Potential Difference]]
**[[Potential Difference in an Insulator]]
**[[Energy Density and Electric Field]]
** [[Systems of Charged Objects]]
*[[Electric Force]]
*[[Electric Force]]
*[[Lorentz Force]]
</div>
</div>
<div class="toccolours mw-collapsible mw-collapsed">
====Tape experiments====
<div class="mw-collapsible-content">
*[[Polarization]]
*[[Polarization]]
**[[Polarization of an Atom]]
*[[Electric Polarization]]
**[[charged conductor and charged insulator]]
</div>
*[[Charge Motion in Metals]]
</div>
 
<div class="toccolours mw-collapsible mw-collapsed">
====Polarization====
<div class="mw-collapsible-content">
*[[Polarization]]
*[[Electric Polarization]]
*[[Polarization of an Atom]]
</div>
</div>
 
===Week 3===
<div class="toccolours mw-collapsible mw-collapsed">
====Conductors and Insulators====
<div class="mw-collapsible-content">
*[[Conductivity and Resistivity]]
*[[Insulators]]
*[[Potential Difference in an Insulator]]
*[[Conductors]]
*[[Polarization of a conductor]]
</div>
</div>
 
<div class="toccolours mw-collapsible mw-collapsed">
 
====Charging and Discharging====
<div class="mw-collapsible-content">
*[[Charge Transfer]]
*[[Charge Transfer]]
*[[Electrostatic Discharge]]
*[[Charged Conductor and Charged Insulator]]
</div>
</div>
===Week 4===
<div class="toccolours mw-collapsible mw-collapsed">
====Field of a charged rod====
<div class="mw-collapsible-content">
*[[Field of a Charged Rod|Charged Rod]]
</div>
</div>
<div class="toccolours mw-collapsible mw-collapsed">
====Field of a charged ring/disk/capacitor====
<div class="mw-collapsible-content">
*[[Charged Ring]]
*[[Charged Disk]]
*[[Charged Capacitor]]
</div>
</div>
<div class="toccolours mw-collapsible mw-collapsed">
====Field of a charged sphere====
<div class="mw-collapsible-content">
*[[Charged Spherical Shell]]
*[[Field of a Charged Ball]]
</div>
</div>
===Week 5===
<div class="toccolours mw-collapsible mw-collapsed">
====Potential energy====
<div class="mw-collapsible-content">
*[[Potential Energy]]
</div>
</div>
<div class="toccolours mw-collapsible mw-collapsed">
====Electric potential====
<div class="mw-collapsible-content">
*[[Electric Potential]]
*[[Path Independence of Electric Potential]]
*[[Potential Difference Path Independence, claimed by Aditya Mohile]]
*[[Potential Difference in a Uniform Field]]
*[[Potential Difference of Point Charge in a Non-Uniform Field]]
</div>
</div>
<div class="toccolours mw-collapsible mw-collapsed">
====Sign of a potential difference====
<div class="mw-collapsible-content">
*[[Sign of a Potential Difference]]
</div>
</div>
<div class="toccolours mw-collapsible mw-collapsed">
====Potential at a single location====
<div class="mw-collapsible-content">
*[[Electric Potential]]
*[[Potential Difference at One Location]]
</div>
</div>
<div class="toccolours mw-collapsible mw-collapsed">
====Path independence and round trip potential====
<div class="mw-collapsible-content">
*[[Path Independence of Electric Potential]]
*[[Potential Difference Path Independence, claimed by Aditya Mohile]]
</div>
</div>
===Week 6===
<div class="toccolours mw-collapsible mw-collapsed">
====Electric field and potential in an insulator====
<div class="mw-collapsible-content">
*[[Potential Difference in an Insulator]]
*[[Electric Field in an Insulator]]
</div>
</div>
<div class="toccolours mw-collapsible mw-collapsed">
====Moving charges in a magnetic field====
<div class="mw-collapsible-content">
*[[Magnetic Field]]
*[[Magnetic Field]]
**[[Right-Hand Rule]]
*[[Magnetic Force]]
**[[Direction of Magnetic Field]]
*[[Lorentz Force]]
**[[Magnetic Field of a Long Straight Wire]]
</div>
**[[Magnetic Field of a Loop]]
</div>
**[[Magnetic Field of a Solenoid]]
<div class="toccolours mw-collapsible mw-collapsed">
**[[Bar Magnet]]
====Biot-Savart Law====
**[[Magnetic Dipole Moment]]
<div class="mw-collapsible-content">
***[[Stern-Gerlach Experiment]]
*[[Biot-Savart Law]]
**[[Magnetic Torque]]
*[[Biot-Savart Law for Currents]]
**[[Magnetic Force]]
</div>
**[[Earth's Magnetic Field]]
</div>
**[[Atomic Structure of Magnets]]
<div class="toccolours mw-collapsible mw-collapsed">
*[[Combining Electric and Magnetic Forces]]
 
**[[Hall Effect]]
====Moving charges, electron current, and conventional current====
**[[Lorentz Force]]
<div class="mw-collapsible-content">
**[[Biot-Savart Law]]
*[[Moving Point Charge]]
**[[Biot-Savart Law for Currents]]
*[[Current]]
**[[Integration Techniques for Magnetic Field]]
</div>
**[[Sparks in Air]]
</div>
**[[Motional Emf]]
 
**[[Detecting a Magnetic Field]]
===Week 7===
**[[Moving Point Charge]]
<div class="toccolours mw-collapsible mw-collapsed">
**[[Non-Coulomb Electric Field]]
====Magnetic field of a wire====
**[[Electric Motors]]
<div class="mw-collapsible-content">
**[[Solenoid Applications]]
*[[Magnetic Field of a Long Straight Wire]]
*[[Magnetic Field of a Curved Wire]]
</div>
</div>
 
<div class="toccolours mw-collapsible mw-collapsed">
 
====Magnetic field of a current-carrying loop====
<div class="mw-collapsible-content">
*[[Magnetic Field of a Loop]]
</div>
</div>
 
<div class="toccolours mw-collapsible mw-collapsed">
====Magnetic field of a Charged Disk====
<div class="mw-collapsible-content">
*[[Magnetic Field of a Disk]]
</div>
</div>
 
<div class="toccolours mw-collapsible mw-collapsed">
====Magnetic dipoles====
<div class="mw-collapsible-content">
*[[Magnetic Dipole Moment]]
*[[Bar Magnet]]
</div>
</div>
 
<div class="toccolours mw-collapsible mw-collapsed">
====Atomic structure of magnets====
<div class="mw-collapsible-content">
*[[Atomic Structure of Magnets]]
</div>
</div>
 
===Week 8===
<div class="toccolours mw-collapsible mw-collapsed">
 
====Circuitry Basics====
<div class="mw-collapsible-content">
*[[Understanding Fundamentals of Current, Voltage, and Resistance]]
</div>
</div>
</div>
</div>
Line 467: Line 641:
<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">


===Simple Circuits===
====Steady state current====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
*[[Components]]
*[[Steady State]]
*[[Steady State]]
*[[Non Steady State]]
*[[Non Steady State]]
*[[Charging and Discharging a Capacitor]]
</div>
*[[Work and Power In A Circuit]]
</div>
*[[Thin and Thick Wires]]
 
*[[Node Rule]]
<div class="toccolours mw-collapsible mw-collapsed">
*[[Loop Rule]]
====Kirchoff's Laws====
*[[Resistivity]]
<div class="mw-collapsible-content">
*[[Power in a circuit]]
*[[Kirchoff's Laws]]
*[[Ammeters,Voltmeters,Ohmmeters]]
</div>
*[[Current]]
</div>
**[[AC]]
 
*[[Ohm's Law]]
<div class="toccolours mw-collapsible mw-collapsed">
====Electric fields and energy in circuits====
<div class="mw-collapsible-content">
*[[Electric Potential Difference]]
</div>
</div>
 
<div class="toccolours mw-collapsible mw-collapsed">
 
====Macroscopic analysis of circuits====
<div class="mw-collapsible-content">
*[[Series Circuits]]
*[[Series Circuits]]
*[[Parallel Circuits]]
*[[Parallel Circuits]]
*[[RC]]
*[[Parallel Circuits vs. Series Circuits*]]
*[[AC vs DC]]
*[[Loop Rule]]
*[[Charge in a RC Circuit]]
*[[Node Rule]]
*[[Current in a RC circuit]]
*[[Fundamentals of Resistance]]
*[[Circular Loop of Wire]]
*[[Problem Solving]]
*[[Current in a RL Circuit]]
</div>
*[[RL Circuit]]
</div>
*[[Feedback]]
 
*[[Transformers (Circuits)]]
===Week 9===
*[[Resistors and Conductivity]]
<div class="toccolours mw-collapsible mw-collapsed">
====Electric field and potential in circuits with capacitors====
<div class="mw-collapsible-content">
*[[Charging and Discharging a Capacitor]]
*[[RC Circuit]]  
*[[R Circuit]]
*[[AC and DC]]
</div>
</div>
 
<div class="toccolours mw-collapsible mw-collapsed">
====Magnetic forces on charges and currents====
<div class="mw-collapsible-content">
*[[Magnetic Force]]
*[[Lorentz Force]]
*[[Motors and Generators]]
*[[Applying Magnetic Force to Currents]]
*[[Magnetic Force in a Moving Reference Frame]]
*[[Right-Hand Rule]]
*[[Analysis of Railgun vs Coil gun technologies]]
</div>
</div>
 
<div class="toccolours mw-collapsible mw-collapsed">
 
====Electric and magnetic forces====
<div class="mw-collapsible-content">
*[[Electric Force]]
*[[Magnetic Force]]
*[[Lorentz Force]]
*[[VPython Modelling of Electric and Magnetic Forces]]
</div>
</div>
 
<div class="toccolours mw-collapsible mw-collapsed">
 
====Velocity selector====
<div class="mw-collapsible-content">
*[[Lorentz Force]]
*[[Combining Electric and Magnetic Forces]]
</div>
</div>
 
===Week 10===
<div class="toccolours mw-collapsible mw-collapsed">
 
====Hall Effect====
<div class="mw-collapsible-content">
*[[Hall Effect]]
*[[Right-Hand Rule]]
*[[Motional Emf]]
*[[Magnetic Force]]
*[[Magnetic Torque]]
</div>
 
====Magnetic force====
<div class="mw-collapsible-content">
*[[Magnetic Force]]
*[[Lorentz Force]]
</div>
</div>
 
<div class="toccolours mw-collapsible mw-collapsed">
====Magnetic torque====
<div class="mw-collapsible-content">
*[[Magnetic Torque]]
*[[Right-Hand Rule]]
</div>
</div>
 
===Week 12===
 
<div class="toccolours mw-collapsible mw-collapsed">
====Gauss's Law====
<div class="mw-collapsible-content">
*[[Gauss's Flux Theorem]]
*[[Gauss's Law]]
*[[Magnetic Flux]]
</div>
</div>
 
<div class="toccolours mw-collapsible mw-collapsed">
====Ampere's Law====
<div class="mw-collapsible-content">
*[[Ampere's Law]]
*[[Ampere-Maxwell Law]]
*[[Magnetic Field of Coaxial Cable Using Ampere's Law]]
*[[Magnetic Field of a Long Thick Wire Using Ampere's Law]]
*[[Magnetic Field of a Toroid Using Ampere's Law]]
*[[Magnetic Field of a Solenoid Using Ampere's Law]]
*[[The Differential Form of Ampere's Law]]
</div>
</div>
 
===Week 13===
<div class="toccolours mw-collapsible mw-collapsed">
====Semiconductors====
<div class="mw-collapsible-content">
*[[Semiconductor Devices]]
*[[Semiconductor Devices]]
*[[Insulators]]
</div>
*[[Voltage]]
</div>
 
<div class="toccolours mw-collapsible mw-collapsed">
====Faraday's Law====
<div class="mw-collapsible-content">
*[[Faraday's Law]]
*[[Motional Emf using Faraday's Law]]
*[[Lenz's Law]]
 
</div>
</div>
</div>
</div>
Line 503: Line 791:
<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">


===Maxwell's Equations===
====Maxwell's equations====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
*[[Gauss's Flux Theorem]]
*[[Gauss's Law]]
**[[Electric Fields]]
*[[Magnetic Flux]]
***[[Examples of Flux Through Surfaces and Objects]]
**[[Magnetic Fields]]
**[[Proof of Gauss's Law]]
*[[Ampere's Law]]
*[[Ampere's Law]]
**[[Magnetic Field of Coaxial Cable Using Ampere's Law]]
**[[Magnetic Field of a Long Thick Wire Using Ampere's Law]]
**[[Magnetic Field of a Toroid Using Ampere's Law]]
*[[Faraday's Law]]
*[[Faraday's Law]]
**[[Curly Electric Fields]]
*[[Maxwell's Electromagnetic Theory]]
**[[Inductance]]
</div>
***[[Transformers (Physics)]]
</div>
***[[Energy Density]]
 
**[[Lenz's Law]]
===Week 14===
***[[Lenz Effect and the Jumping Ring]]
<div class="toccolours mw-collapsible mw-collapsed">
**[[Lenz's Rule]]
====Circuits revisited====
**[[Motional Emf using Faraday's Law]]
<div class="mw-collapsible-content">
*[[Ampere-Maxwell Law]]
 
*[[Superconductors]]
</div>
**[[Meissner effect]]
</div>
 
<div class="toccolours mw-collapsible mw-collapsed">
 
====Inductors====
<div class="mw-collapsible-content">
*[[Inductors]]
*[[Current in an LC Circuit]]
*[[Current in an RL Circuit]]
</div>
</div>
 
===Week 15===
<div class="toccolours mw-collapsible mw-collapsed">
==== Electromagnetic Radiation ====
<div class="mw-collapsible-content">
*[[Electromagnetic Radiation]]
</div>
</div>
</div>
</div>


<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">
====Sparks in the air====
<div class="mw-collapsible-content">
*[[Sparks in Air]]
*[[Spark Plugs]]
</div>
</div>


===Radiation===
<div class="toccolours mw-collapsible mw-collapsed">
====Superconductors====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
*[[Producing a Radiative Electric Field]]
*[[Superconducters]]
*[[Sinusoidal Electromagnetic Radiaton]]
*[[Superconductors]]
*[[Lenses]]
*[[Meissner effect]]
*[[Energy and Momentum Analysis in Radiation]]
</div>
**[[Poynting Vector]]
</div>
*[[Electromagnetic Propagation]]
**[[Wavelength and Frequency]]
*[[Snell's Law]]
*[[Effects of Radiation on Matter]]
*[[Light Propagation Through a Medium]]
*[[Light Scaterring: Why is the Sky Blue]]
*[[Light Refraction: Bending of light]]
*[[Cherenkov Radiation]]
*[[Rayleigh Effect]]
*[[Image Formation]]
</div>
</div>
<div style="float:left; width:30%; padding:1%;">
==Physics 3==
===Week 1===
<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">
====Classical Physics====
<div class="mw-collapsible-content">
*[[Classical Physics]]
</div>
</div>


===Sound===
[[Category:Which Category did you place this in?]]
 
===Weeks 2 and 3===
<div class="toccolours mw-collapsible mw-collapsed">
====Special Relativity and the Lorentz Transformation====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
*[[Doppler Effect]]
*[[Frame of Reference]]
*[[Nature, Behavior, and Properties of Sound]]
 
*[[Speed of Sound]]
*[[Einstein's Theory of Special Relativity]]
*[[Resonance]]
*[[Time Dilation]]
*[[Sound Barrier]]
*[[Lorentz Transformations]]
*[[Sound Rarefaction]]
*[[Relativistic Doppler Effect]]
*[[Einstein's Theory of General Relativity]]
*[[Albert A. Micheleson & Edward W. Morley]]
*[[Magnetic Force in a Moving Reference Frame]]
</div>
</div>
</div>
</div>
===Week 4===
<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">
====Photons and the Photoelectric Effect====
<div class="mw-collapsible-content">
*[[Spontaneous Photon Emission]]
*[[Light Scattering]]
*[[Lasers]]
*[[Electronic Energy Levels and Photons]]
*[[Quantum Properties of Light]]
*[[The Photoelectric Effect]]
</div>
</div>


===Waves===
===Weeks 5 and 6===
<div class="toccolours mw-collapsible mw-collapsed">
====Matter Waves and Wave-Particle Duality====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
*[[Bragg's Law]]
*[[Multisource Interference: Diffraction]]
*[[Standing waves]]
*[[Gravitational waves]]
*[[Plasma waves]]
*[[Wave-Particle Duality]]
*[[Wave-Particle Duality]]
*[[Electromagnetic Spectrum]]
*[[Particle in a 1-Dimensional box]]
*[[Color Light Wave]]
*[[Heisenberg Uncertainty Principle]]
*[[The Wave Equation]]
</div>
*[[Pendulum Motion]]
</div>
 
===Week 7===
<div class="toccolours mw-collapsible mw-collapsed">
====Wave Mechanics====
<div class="mw-collapsible-content">
*[[Standing Waves]]
*[[Wavelength]]
*[[Wavelength and Frequency]]
*[[Mechanical Waves]]
*[[Transverse and Longitudinal Waves]]
*[[Transverse and Longitudinal Waves]]
*[[Planck's Relation]]
*[[Fourier Series and Transform]]
*[[interference]]
</div>
*[[Polarization of Waves]]
</div>
 
===Week 8===
<div class="toccolours mw-collapsible mw-collapsed">
====Schrödinger Equation====
<div class="mw-collapsible-content">
*[[The Born Rule]]
*[[Solution for a Single Free Particle]]
*[[Solution for a Single Particle in an Infinite Quantum Well - Darin]]
*[[Solution for a Single Particle in a Semi-Infinite Quantum Well]]
*[[Quantum Harmonic Oscillator]]
*[[Solution for Simple Harmonic Oscillator]]
</div>
</div>
 
===Week 9===
<div class="toccolours mw-collapsible mw-collapsed">
====Quantum Mechanics====
<div class="mw-collapsible-content">
*[[Quantum Tunneling through Potential Barriers]]
</div>
</div>
</div>
<div class="toccolours mw-collapsible mw-collapsed">
====The Hydrogen Atom====
<div class="mw-collapsible-content">
*[[Quantum Theory]]
*[[Atomic Theory]]
</div>
</div>
</div>
===Week 10===
<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">
====Rutherford-Bohr Model====
<div class="mw-collapsible-content">
*[[Rutherford Experiment and Atomic Collisions]]
*[[Bohr Model]]
*[[Quantized energy levels]]
*[[Energy graphs and the Bohr model]]
</div>
</div>


===Real Life Applications of Electromagnetic Principles===
===Week 11===
<div class="toccolours mw-collapsible mw-collapsed">
====Many-Electron Atoms====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
*[[Electromagnetic Junkyard Cranes]]
*[[Quantum Theory]]
*[[Maglev Trains]]
*[[Atomic Theory]]
*[[Spark Plugs]]
*[[Pauli exclusion principle]]
*[[Metal Detectors]]
</div>
*[[Speakers]]
</div>
*[[Radios]]
*[[Ampullae of Lorenzini]]
*[[Electrocytes]]
*[[Generator]]
*[[Measuring Water Level]]
*[[Cyclotron]]
*[[Railgun]]
*[[Magnetic Resonance Imaging]]
*[[Electric Eels]]
*[[Windshield Wipers]]
*[[Galvanic Cells]]
*[[Magnetoreception]]


===Week 12===
<div class="toccolours mw-collapsible mw-collapsed">
====The Nucleus====
<div class="mw-collapsible-content">
*[[Nucleus]]
</div>
</div>
</div>
</div>


===Week 13===
<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">
====Molecules====
<div class="mw-collapsible-content">
*[[Molecules]]
*[[Covalent Bonds]]
</div>
</div>


===Optics===
===Week 14===
<div class="toccolours mw-collapsible mw-collapsed">
====Statistical Physics====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
*[[Mirrors]]
*[[Application of Statistics in Physics]]
*[[Refraction]]
</div>
*[[Quantum Properties of Light]]
</div>
*[[Lasers]]


===Week 15===
<div class="toccolours mw-collapsible mw-collapsed">
====Statistical Physics====
<div class="mw-collapsible-content">
*[[Temperature & Entropy]]
</div>
</div>
</div>
</div>


== Resources ==
===Additional Topics===
* Commonly used wiki commands [https://en.wikipedia.org/wiki/Help:Cheatsheet Wiki Cheatsheet]
<div class="toccolours mw-collapsible mw-collapsed">
* A guide to representing equations in math mode [https://en.wikipedia.org/wiki/Help:Displaying_a_formula Wiki Math Mode]
====Condensed Matter Physics====
* A page to keep track of all the physics [[Constants]]
<div class="mw-collapsible-content">
* A page for review of [[Vectors]] and vector operations
</div>
</div>
<div class="toccolours mw-collapsible mw-collapsed">
====Nuclear Physics====
<div class="mw-collapsible-content">
*[[Nuclear Fission]]
*[[Nuclear Energy from Fission and Fusion]]
</div>
</div>
<div class="toccolours mw-collapsible mw-collapsed">
====Particle Physics====
<div class="mw-collapsible-content">
*[[Elementary Particles and Particle Physics Theory]]
*[[String Theory]]
</div>
</div>
</div>

Latest revision as of 08:32, 4 October 2024

Georgia Tech Student Wiki for Introductory Physics.

This resource was created so that students can contribute and curate content to help those with limited or no access to a textbook. When reading this website, please correct any errors you may come across. If you read something that isn't clear, please consider revising it for future students!

Looking to make a contribution?

  1. Pick one of the topics from intro physics listed below
  2. Add content to that topic or improve the quality of what is already there.
  3. Need to make a new topic? Edit this page and add it to the list under the appropriate category. Then copy and paste the default Template into your new page and start editing.

Please remember that this is not a textbook and you are not limited to expressing your ideas with only text and equations. Whenever possible embed: pictures, videos, diagrams, simulations, computational models (e.g. Glowscript), and whatever content you think makes learning physics easier for other students.

Source Material

All of the content added to this resource must be in the public domain or similar free resource. If you are unsure about a source, contact the original author for permission. That said, there is a surprisingly large amount of introductory physics content scattered across the web. Here is an incomplete list of intro physics resources (please update as needed).

  • A physics resource written by experts for an expert audience Physics Portal
  • A wiki written for students by a physics expert MSU Physics Wiki
  • A wiki book on modern physics Modern Physics Wiki
  • A collection of 26 volumes of lecture notes by Prof. Wheeler of Reed College [1]
  • The MIT open courseware for intro physics MITOCW Wiki
  • An online concept map of intro physics HyperPhysics
  • Interactive physics simulations PhET
  • OpenStax intro physics textbooks: Vol1, Vol2, Vol3
  • The Open Source Physics project is a collection of online physics resources OSP
  • A resource guide compiled by the AAPT for educators ComPADRE
  • The Feynman lectures on physics are free to read Feynman
  • Final Study Guide for Modern Physics II created by a lab TA Modern Physics II Final Study Guide

Resources


Physics 1

Week 1

GlowScript 101

Vectors and Units

Week 2

Iterative Prediction with a Constant Force

Week 3

Analytic Prediction with a Constant Force

Week 4

Week 5

Week 6

Identifying Forces

Week 7

Jeet Bhatkar

Energy Principle

The Energy Principle is a fundamental concept in physics that describes the relationship between different forms of energy and their conservation within a system. Understanding the Energy Principle is crucial for analyzing the motion and interactions of objects in various physical scenarios.

Kinetic energy is the energy an object possesses due to its motion.

Potential energy arises from the position of an object relative to its surroundings. Common forms of potential energy include gravitational potential energy and elastic potential energy.

Work and energy are closely related concepts. Work ( 𝑊) done on an object is defined as the force ( 𝐹) applied to the object multiplied by the displacement ( 𝑑) of the object in the direction of the force: The Energy Principle states that the total mechanical energy of a system remains constant if only conservative forces (forces that depend only on the positions of the objects) are acting on the system.

The principle of conservation of energy states that the total energy of an isolated system remains constant over time. In other words, energy cannot be created or destroyed, only transformed from one form to another. This principle is a fundamental concept in physics and has wide-ranging applications in mechanics, thermodynamics, and other branches of science.

Week 8

Work by Non-Constant Forces

Week 9

Week 10

Choice of System

Week 11

Different Models of a System

Week 12

Conservation of Momentum

Week 13

Week 14

Week 15

Physics 2

Week 1

Electric force

Electric field of a point particle

Week 2

Week 3

Week 4

Field of a charged rod

Field of a charged ring/disk/capacitor

Week 5

Potential energy

Sign of a potential difference

Week 6

Electric field and potential in an insulator

Moving charges in a magnetic field

Moving charges, electron current, and conventional current

Week 7

Magnetic field of a current-carrying loop

Magnetic field of a Charged Disk

Atomic structure of magnets

Week 8

Steady state current

Kirchoff's Laws

Electric fields and energy in circuits

Week 9

Electric field and potential in circuits with capacitors

Week 10

Week 12

Week 13

Semiconductors

Week 14

Circuits revisited

Week 15

Electromagnetic Radiation

Sparks in the air

Physics 3

Week 1

Classical Physics

Weeks 2 and 3

Week 4

Weeks 5 and 6

Week 7

Week 8

Week 9

The Hydrogen Atom

Week 10

Week 11

Week 12

The Nucleus

Week 13

Week 14

Week 15

Statistical Physics

Additional Topics

Condensed Matter Physics